
Chandrakant S. Desai

Mechanics
of

Materials
and

Interfaces
The

Disturbed State Concept

Boca Raton   London   New York   Washington, D.C.
CRC Press

© 2001 By CRC Press LLC



This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, or visit
our website at www.crcpress.com

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0248-X

Library of Congress Card Number 00-052883
Printed in the United States of America  1  2  3  4  5  6  7  8  9  0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Desai, C.S. (Chandrakant S.), 1936–
Mechanics of materials and interfaces : the disturbed state concept / by Chandrakant S. Desai

p.   cm.
Includes bibliographical references and index.
ISBN 0-8493-0248-X (alk. paper)
1. Strength of materials—Mathematical models. 2. Strains and stresses. 3. Interfaces

(Physical sciences) I. Title.

TA405 .D45 2000
620.1′12′015118—dc21 00-052883



To my father

• who, I believe, is inquisitive and questioning in the space beyond,
which is congruent to that of mine.

and

To those giants

• of mechanics, physics, and philosophy, on whose contributions we
stand and extend.

Continuum and discontinuum,
Points and spaces,
Exist together, United and Coupled;
Sat and Asat,
Existence and nonexistence;
Exist together, United and Coupled;
Merging in each other.

© 2001 By CRC Press LLC



PREFACE

Understanding and characterizing the mechanical behavior of engineering
materials and interfaces or joints play vital roles in the prediction of the
behavior, and the analysis and design, of engineering systems. Principles of
mechanics and physics are invoked to derive governing equations that allow
solutions for the behavior of the systems. Such closed-form or numerical
solutions involve the important component of material behavior defined by
constitutive laws or equations or models.

Definition of the constitutive laws based on fundamental principles of
mechanics, identification of significant parameters, determination of the
parameters from appropriate (laboratory and/or field) tests, validation of the
models with respect to the test data, implementation of the models in the solu-
tion procedures—closed-form or computational—and validation of practical
boundary-value problems are all important ingredients in the development
and use of realistic material models.

The characterization of the mechanical behavior of engineering materials,
called the stress–strain or constitutive models, has been the topic under the
general subject of “mechanics of materials”. As material behavior is very
often nonlinear, the governing equations are also nonlinear. In the early
stages, however, it was necessary to linearize the governing differential equa-
tions so that the closed-form solution procedures could be used. The advent
of the electronic computer, with increasing storage capacity and speed, made
it possible to solve nonlinear equations in discretized forms. Hence, the need
to assume constant coefficients or material parameters in the linear and
closed-form solutions may no longer exist. As a consequence, it is now pos-
sible to develop and use models for realistic nonlinear material response.

Almost all materials exhibit nonlinear behavior. In simple words, this implies
that the response of the material is not proportional to the input excitation or
load. Hence, although the assumption of linearity provided, and still can pro-
vide, useful solutions, their validity is highly limited in the nonlinear regimes of
the material response. Thus, the fact that modern computers and numerical or
computational methods now permit the consideration of nonlinear responses is
indeed a highly desirable development.

Among linear constitutive models are Hooke’s law that defines linear elastic
stress–strain response under mechanical load, Darcy’s law that defines the lin-
ear velocity-gradient response for fluid flow, and Ohm’s law that defines the
linear voltage-current relation for electrical flow. It is recognized that the
validity of these models is limited. Hooke’s law does not apply if the material
response involves effect of factors such as state of stress or strain, stress or
loading paths, temperature, initial and induced discontinuities, and existence
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of fluid or gas in the material’s porous microstructure. Darcy’s law does not
apply if the flow is turbulent, and Ohm’s law loses validity if the conducting
material is nonhomogeneous and thermal effects are present.

For the characterization of the nonlinear behavior of materials, the effects
of significant factors such as initial conditions, state of stress, stress or loading
path, type of loading, and multiphase nature need to be considered for real-
istic engineering solutions. The pursuit of the development of models for the
nonlinear response has a long history in the subjects of physics and mechan-
ics of materials. Among the models proposed and developed are linear and
nonlinear elasticity (e.g., hyper- and hypoelasticity), classical plasticity (von
Mises, Tresca, Mohr–Coulomb, Drucker–Prager), continuous hardening or
yielding plasticity (critical-state, cap, hierarchical single-surface–HISS), and
kinematic and anisotropic hardening in the context of the theory of plasticity. 

Viscoelastic, viscoplastic, and elastoviscoplastic models are among those
developed to account for time-dependent viscous or creep response. Endo-
chronic theory involving an implicit time scale has been proposed in the con-
text of plasticity and viscoplasticity.

Models based on micromechanical considerations involve the idea that the
observed macrolevel response of the material can be obtained by integrating the
responses of behavior at the micro- or particle level, often through a process of
linear integration. Although this idea is elegant, at this time it suffers from the
limitation that the particle-level response is difficult to measure and characterize.

Most of the models are based on the assumption that the material is contin-
uous. As a result, the theories of continuum mechanics have been invoked for
their formulation. It is, recognized, however, that discontinuities exist and
develop in a deforming material. Thus, the theories based on continuum
mechanics may not be strictly valid, and various models based on fracture
and continuum damage concepts thereby become relevant.

The classical continuum damage models are based on the idea that a mate-
rial experiences microcracking and fracturing, which can cause degradation
or damage in the material’s stiffness and strength. The remaining degraded
stiffness (strength) is then defined on the basis of the response of the undam-
aged part modified by growing damaged parts, which are assumed to act like
voids and possess no strength at all. As a result, the classical continuum dam-
age models do not allow for the coupling and interaction between the dam-
aged and undamaged parts. This aspect has significant consequences, as the
effect of neighboring (damaged) parts is not included in the characterization
of the response.

Various nonlocal and microcrack interaction models have been proposed in
the context of the classical damage model. An objective here has been to
develop constitutive equations that allow for the coupling between the dam-
aged (microcracked) and undamaged parts and the effect of what happens in
the neighborhood of a material point. Such enhancements as gradient,
Cosserat, and micropolar theories have been proposed to incorporate the non-
local effects.
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The effects of temperature and other environmental factors are incorpo-
rated by developing separate theories or by expressing the parameters in the
above models as functions of temperature or other environmental factors.

The foregoing models are usually relevant for a specific characteristic of the
material behavior such as elastic, plastic, creep, microcracking, and fracture.
Each model involves a set of parameters for a specific characteristic that needs
to be determined from laboratory tests. There is a growing recognition that
development of unified or integrated constitutive descriptions can lead to
more efficient, economical, and simplified models with ease of implementa-
tion in solution procedures. As a result, a number of efforts have been made
toward unified or hierarchical models. The approach presented in this book
represents one of these unified concepts: the disturbed state concept (DSC).

The DSC is a unified modelling approach that allows, in an integrated man-
ner, for elastic, plastic, and creep strains, microcracking and fracture leading
to softening and damage, and stiffening or healing, in a single framework. Its
hierarchical nature permits the adoption and use of specialized versions for
the foregoing factors. As a result, its development and application are simpli-
fied considerably.

The DSC is based on the basic physical consideration that the observed
response of a material can be expressed in terms of the responses of its con-
stituents, connected by the coupling or disturbance function. In simple
words, the observed material state is considered to represent disturbance or
deviation with respect to the behavior of the material for appropriately
defined reference states. This approach is consistent with the idea that the
current state of a material system, animate or inanimate, can be considered to
be the disturbed state with respect to its initial and final state(s).

In the case of engineering materials, the DSC stipulates that at any given
deformation stage, the material is composed of two (or more) parts. For
instance, a dry deforming material is composed of material parts in the orig-
inal (continuum) state, called the relatively intact (RI) state, and remaining
parts in the degraded or stiffened state, called the fully adjusted (FA) state;
the meanings of the terms “RI and FA state” will be explained in subsequent
chapters. The degraded part can represent effects of relative particle motions
and microcracking due to the natural self-adjustment (SA) of particles in the
material’s microstructure and can lead to damage or degradation. Under fac-
tors such as chemical, temperature, and fluid effects, the microstructure may
experience stiffening or healing. Although the degradation or damage aspect
in the DSC is similar to that in the classical damage models, the basic frame-
work of the DSC is general and significantly different from that of the dam-
age concept.

If a material element is composed of more than one material, the DSC can
be formulated for the overall observed response (of the composite) by treat-
ing the behavior of individual components as reference responses. The
behavior of an individual component may be characterized by using a con-
tinuum theory or by treating it as a mixture of the RI and FA parts.
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Details of the DSC, including formulation of equations, identification of
material parameters, determination of parameters from (laboratory) tests,
validation at the laboratory test stage, implementation in solution (com-
puter) procedures, and validation and solution of practical boundary-value
problems, are presented in this book. Comparisons between the DSC and
other available models are discussed, including the advantages the DSC
offers. The latter arise due to characteristics such as the compact and unified
nature of the DSC, physical meanings of material parameters, considerable
reduction in the regression and curve-fitting required in many other models,
ease of determination of parameters, and ease of implementation in solution
procedures.

One of the DSC’s advantages is that it can be used for “solid” materials and
for interfaces and joints. The latter play an important role in the behavior of
many engineering systems involving combinations of two or more materials.
They include contacts in metals, interfaces in soil-medium (structure) prob-
lems, joints in rock, and joints in electronic packaging systems. It is shown
that the mathematical framework of the DSC for three-dimensional solids
can be specialized for the behavior of material contacts idealized as thin-layer
zones or elements.

The fact that the DSC allows for interaction and coupling between the RI
and FA parts offers a number of advantages in that the nonlocal effects are
included in the model, hence also the characteristic dimension.

The DSC does not require constitutive description of particle-level processes
as the micromechanical models do. The interacting behavior of the material
composed of millions of particles is expressed in terms of the coupled
responses of the material parts (clusters) in the RI and FA parts. The response
of the RI and FA parts can be defined from laboratory tests. Thus, the DSC
eliminates the need for defining particle-level behavior, which is difficult to
measure at this time. At the same time, it allows for the coupled microlevel
processes.

The behavior of material parts in the reference states in the DSC can be
defined on the basis of any suitable model(s). Often, such available contin-
uum theories as elasticity and plasticity, and the critical-state concept, are
invoked for the characterizations.

The DSC represents a continuous evolution in the pursuit of the develop-
ment of constitutive models by the author and his co-workers. Although it
involves a number of new and innovative ideas, the DSC also relies on the
available theories of mechanics and the contributions of many people who
have been the giants in this field. For instance, the DSC includes ideas and
concepts from the available elasticity, plasticity, viscoplasticity, damage, frac-
ture, and critical-state theories. As the DSC allows adoption of these available
models as special cases, they are presented individually in separate chapters,
with identification of their use in the DSC.

In summary, the DSC is considered to represent a unique and powerful mod-
elling procedure to characterize the behavior of a wide range of materials and
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interfaces. Its capabilities go beyond available material models, and it simulta-
neously leads to significant simplification toward practical applications.

The DSC permits approximation of material systems as discontinuous and
includes their continuum attribute as a special case. Thus, it can provide a
generalized basis for the introduction of the subject of mechanics of materials.
It is therefore possible that the DSC can be introduced first as the general and
basic approach in undergraduate courses on the strength or mechanics of
materials in the first few lectures, and then the traditional mechanics of
materials can be taught as before, by assuming the material systems to be
continuous. The DSC can later be brought into the upper-level undergradu-
ate courses. Hence, the material in this book can be introduced in under-
graduate courses.

The advanced topics in the book can be taught in graduate-level courses
with prerequisites of continuum theories such as elasticity and plasticity. The
book can be useful to the researcher who wants to employ up-to-date, unified
and simplified models to account for realistic nonlinear behavior of materials
and interfaces. It will also be useful to practitioners involved in the solution
of problems requiring realistic models and computer procedures.

The objectives of this text are as follows:

(1) to present a philosophical and detailed theoretical treatment of the
DSC, including a comparison with other available models;

(2) to identify the physical meanings of the parameters involved and
present procedures to determine them from laboratory test data;

(3) to use the DSC to characterize the behavior of materials such as
geologic, ceramic, concrete, metal (alloys), silicon, and asphalt con-
crete, and interfaces and joints;

(4) to validate the DSC models with respect to laboratory tests used
to find the parameters, and independent tests not used in the cali-
bration;

(5) to implement the DSC models in computer (finite-element) proce-
dures; and

(6) to validate the computer procedures by comparing predictions
with observations from simulated and field boundary-value prob-
lems.

The basic theme of the text is to show that the DSC can provide a unified
and simplified approach for the mathematical characterization of the
mechanical response of materials and interfaces. As the final objective of any
material model is to solve practical engineering problems, the text attempts
to relate the models to practical use through their implementation in solution
(computer) procedures. To this end, a number of problems from different dis-
ciplines such as civil, mechanical, and electrical engineering are solved using
the computer procedures.
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I would like to conclude the preface with the following statements:

Students of mechanics of materials often raise the question, ‘‘Is there a
constitutive model which is applicable to all materials?’’ And I respond:
‘‘Although our understanding of the material’s response is growing,
there is no model available that can characterize all materials in all re-
spects. To understand and characterize matter (materials) completely, one
may need to become the matter itself! When that happens, there is no dif-
ference left, and a full understanding may follow.’’

This realization is important because the pursuit toward increased com-
prehension and improved characterization of materials must continue!

A number of my students and co-workers have participated in the devel-
opment and application of the concepts and models presented in this book;
their contributions are cited through references in various chapters. I have
learned from them more than I could have from books. I wish to express spe-
cial gratitude to Professor Antonio Gens, who read the manuscript and
offered valuable suggestions. His remarks on mechanics, physics, and philos-
ophy have enlightened and encouraged me. I wish to express my thanks to
Professor K. G. Sharma, Professor Giancarlo Gioda, Dr. Marta Dolezalova,
Dr. Nasser Khalili, and Dr. Hans Mühlhaus, who read parts of the manuscript
and provided helpful comments. Mr. M. Dube, Mr. R. Whitenack, Mr. Z. Wang,
and Mr. S. Pradhan provided useful suggestions and assistance. Thanks are
due to Mrs. Rachèlè Logan for her continued assistance. My mother Kamala,
wife Patricia, daughter Maya, and son Sanjay have been sources of constant
support and inspiration.

Chandrakant S. Desai
Tucson, Arizona
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1.5.1 Outlines of Chapters

 

1.1 Prelude

 

Continuity and discontinuity, order and disorder, positive and negative
exist simultaneously; they are not separate, and they are contained and
culminate in each other. They produce the holistic material world. The
material world, 

 

matter

 

, is a projection or manifestation of the complex
and mysterious universe, which we have to deal with and comprehend.
“Engineering material” is but a subset of the material world and carries
with it the complexity and consciousness of the whole. The metaphysi-
cal and physical comprehension of matter entails interconnected phe-
nomena at the macroscopic, microscopic, atomic, and subatomic levels,
and beyond.

The 

 

Vedas

 

, the ancient scriptures of 

 

knowledge

 

 from India, say that order
(or 

 

rta

 

) is not fully manifested in the physical world or matter, and it exists
with disorder, which may contain what remains to be realized. At the same
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time, there is harmony between 

 

being

 

 (existence, or 

 

sat

 

), and its external
manifestation, which is order (

 

rta

 

) (1–3). The manifested state is subject to
laws and theories based on measurable quantities (like deformation and
failure or collapse), while there always remains the germ of what is to
come, which is nonmeasurable and incomprehensible. What is incompre-
hensible may reside in the space between particles (atoms) as the 

 

life force

 

(

 

prana

 

 or 

 

chi

 

).

 

No material system under external influences exists in a unique composition.
At any stage during deformation, a given material element may be treated
as a mixture of a part of its 

 

initial self

 

, the relatively intact (RI), and another
transformed part due to the self-adjustment of the material’s microstructure,
at the 

 

fully adjusted

 

 (FA) state. A material element may also be composed of
more than one material; then each of the components can be treated as a ref-
erence. The components exist simultaneously and contribute to the response
of the mixture.

For a given material, the fully adjusted state can be described as the 

 

critical
state

 

 at which the material approaches the state of invariant properties. For
instance, at the critical state, the material approaches a state of constant den-
sity or specific volume. The critical state is approached through changes in the
microstructure due to microcracking and relative motions of particles. The
critical state is asymptotic and cannot be measured precisely or realized, but
can be measured and defined 

 

approximately

 

 so as to construct mathematical
models. The critical state is like the state Buddhists call 

 

nirvana

 

, in which all
biases, pushes, and pulls, due to 

 

karmic

 

 action (like nonsymmetric forces on
materials, say, causing shear stresses), disappear, leading to the equilibrium or
isotropic state.

The interpretation of material response that may be governed by factors
beyond the mechanistic laws presented here is rather subjective. Its philo-
sophical intent may be of interest to some readers, while to others it may
seem not to be relevant from a technological viewpoint. It is presented with
the notion that an appreciation of such factors can lead to vistas that may
allow improved understanding and characterizations.

 

1.2 Motivation

 

The behavior of engineering materials under external forces is similar to the
behavior of matter under external influences. It is possible that the behavior
of materials at different levels—atomic, microscopic, and macroscopic—is
similar; in other words, a collection of atoms may behave the same way as
a collection of finite-sized particles. The observed behavior is affected by
the components of the material element at a given level. For instance, the
microlevel behavior is influenced by the behavior of the particle (skeleton)
as well as the 

 

space

 

 between the particles. The particle system may be com-
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posed of mo re than one identifiable component, e.g., solids and liquid. The
solid part may be treated as (relatively) intact or continuum, and the part that
has experienced progressive microcracking and damage or strengthening by
cohesive forces caused by chemicals can be treated as the FA or another
reference state.

 

1.2.1 Explanation of Reference States

 

The use of the term 

 

relatively

 

 in the relatively intact (RI) state needs an expla-
nation. Consider an example of a material that transforms from its solid state
to the liquid state due to melting under a given temperature change. Figure 1.1
shows a symbolic representation of the melting process. The maximum den-
sity (which may be unattainable) in the solid state is denoted by 

 

�

 

m

 

. However,
the material has only a relative existence; in other words, in the solid state, it
can exist under different densities, 

 

�

 

1

 

, 

 

�

 

2

 

,…. Consider an intermediate state
with density 

 

�

 

i

 

 during the melting process, which may be composed of parts
of solid and liquid states. Then the intermediate state can be considered to be dis-
turbed (

 

D

 

) with respect to its starting density (

 

�

 

1

 

, or 

 

�

 

2

 

…). Thus, because a
number of relative initial densities are possible for defining the disturbance,
we use the term 

 

relatively

 

 to denote the solid reference state. Indeed, if known
and measurable, the maximum density state can be used as the reference
state; in that case, it may simply be referred to as the intact (I) state. The liquid
state with density 

 

�

 

L

 

 can be adopted as the other reference state in the fully
adjusted or fully liquefied condition. Later here and in subsequent chapters,
we shall provide further and other explanations of the RI and FA states in the
context of deforming materials.

The DSC is based on the fundamental idea that the behavior of an engineer-
ing material can be defined by an appropriate connection that characterizes
the interaction between the behavior of the components, e.g., at the reference
states RI and FA.

A deforming material exhibits the 

 

manifested

 

 and 

 

unmanifested

 

 responses;
see Fig. 1.2. The manifested response is what we can measure in the labora-
tory or field tests on the material, and it can be quantified and defined using
physical laws. The unmanifested response cannot be measured and may not

 

FIGURE 1.1

 

Relative densities of solid material melting to liquid state.
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be amenable to known physical laws. The limitations of the measurement
devices do not allow the measurement of the unmanifested response during
which the material tends toward the FA or critical state (

 

c

 

), which may rep-
resent the fully disintegrated state of the material as a collection of particles
or the fractured state involving a multitude of separations. The inclusion of
the unmanifested response in the material characterization can indeed pro-
vide more realistic models. However, as the unmanifested response cannot
be measured, it becomes necessary to quantify and define the FA response
approximately, by using the stages 

 

failure

 

 (

 

D

 

f

 

) or 

 

asymptotic

 

 (

 

D

 

u

 

) (Fig. 1.2).
The inclusion of even such an approximate definition of the FA state can lead
to improved models. The DSC is based on the use of the approximate defi-
nition of the response of the material in the FA state. Such 

 

approximate

 

 constitu-
tive models are considered to be 

 

incomplete

 

 because a part of the response
cannot be measured, defined, or understood fully.

 

1.2.2 Engineering Materials and Matter

 

An engineering material is a special manifestation of the matter in the universe,
and its response can be considered a subset of the general behavior of matter. We
usually characterize the behavior of the material based essentially on the mech-
anistic considerations that treat it as composed of 

 

inert

 

 or 

 

dead

 

 particles; in other
words, the material skeleton is assumed to behave like a “machine.”

 

FIGURE 1.2

 

Representations of the DSC.
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Figure 1.3 shows a schematic of the different levels at which matter can
exist. Its original, most condensed 

 

cosmic

 

 state is marked as “O.” Under var-
ious forces, it disintegrates and forms local material manifestations, one of
them being the engineering material. The disintegrated matter, under vari-
ous forces, tries to return to the ‘O’ state; perhaps the states “O” and ‘O’ are
the same! The engineering material, at the local level, also starts from a
given state (RI) and, under local engineering forces, tends toward the local
(FA) state;  (FA)

 

�

 

 is the ultimate nonmeasurable state. This may be treated
analogously to the seed, which germinates into a tree (a mixture of order
and disorder) and then coalesces into the seed. The “morning star” and
“evening star” were thought to be different, but it was found that both are
the planet Venus! Thus, although we deal with the transformed material
state in the engineering sense, in a philosophical sense, the initial and final
material states are probably the same.

 

Time present and time past are both perhaps present in time future, and
time future contained in time past.

 

…

 

 What might have been and what
has been point to one end, which is always present.

T.S. Eliot (

 

Burnt Norton

 

)

 

Perhaps, we can replace 

 

time

 

 by 

 

matter

 

.

 

“We know now that we live in a historical universe, one in which, not
only living organisms, but stars and galaxies are born, mature, grow old
and die. There is good reason to believe it to be a universe permeated with
life, in which life arises, given enough time, wherever the conditions exist
that make it possible,” said Nobel laureate Wald (4).

 

Many quantum physicists have related the understanding of matter with
cosmological concepts from the Eastern theological and mystical traditions
(5–8). The central role of consciousness in the comprehension of matter in the
Vedic tradition has been found to compare with the conclusions of modern
physical thoughts (8, 9). Erwin Schrödinger (5), one of the pioneers of quan-
tum mechanics, believed that the issues of determinism can be understood
essentially through the Vedic concept of unique and all-pervading con-
sciousness, which is composed of the consciousness of individual compo-
nents of matter. These and other (recent) thoughts make us aware that
scientific and religious (mystical) concepts can essentially be the same; both
can lead to the understanding of matter as it exists and to the reality (“truth”
or “sat”) of the existence.

There is only one consciousness, and all manifestations (matter, living
and nonliving) are that (or parts) of that consciousness. Goswami et al. (8)
propose the concept of monistic idealism. Here the dualism of mind and
matter does not exist, but they interact and exchange energy, and con-
sciousness is considered to be the basic element of reality. This concept
states that everything including matter exists in and is manipulated from
consciousness.
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FIGURE 1.3

 

Levels of material’s existence.

 

C
h-01  Page 6  M

onday, N
ovem

ber 13, 2000  5:58 PM

©
 2001 B

y C
R

C
 P

ress LLC



© 2001 By CRC Press LLC

  

The well-known Indian scientist, J.C. Bose, found that apparently nonliving
matter (e.g., plants) possesses properties similar to those in animate matter;
he developed the Crescograph to measure them experimentally. His findings
implied that the boundary between the animate and inanimate vanishes, and
points of contact emerge between the domains of the living and nonliving.

The manifested matter, which derives from the same origin (premordial mat-
ter), whether animate or living, inanimate, metal, plant, and animal, may follow
the same universal law of causality involving action and reaction. They all may
exhibit essentially similar phenomena of stress, degradation and fatigue
(depression), growth or stiffening (exhilaration), and potential for recovery, as
well as permanent unresponsiveness (failure or death at the local level).

Response of the matter, then, is governed by metaphysical laws, which
include the mechanistic laws as a subset. Our modelling is based on the mech-
anistic laws and does not include what exists between the mechanistic and
the metaphysical, which is most probably governed by the nonidentifiable
and inconceivable property of consciousness that resides in the life force
(

 

prana

 

, 

 

chi

 

) between the material particles. It is this property that may be a
cause of the 

 

interaction

 

 between (clusters of) material particles, which at the
mechanistic level can be considered to be defined through the 

 

characteristic
dimension

 

. Hence, a model to describe the response of the material is required
to include the characteristic dimension. The DSC includes this property
implicitly in its formulation.

The motion of particles in any physical system leads to a transition from
one state at an instant of time to the next state at the next instant of time.
When the next state occurs, the existence of the previous state ceases, but its
influence does not. There is always a gap, however small, between the two
states. In mechanics, we try to characterize the physical motion from one
state to the next by treating the material particle as an inert entity. However,
the influence of the gap (which is not known) and of what is contained in it
can be profound on the motion from one state to the next; “the things that we
see are temporal, but things that are unseen are eternal” (II Corinthians 4:18).
It is this influence that may govern the capability of the physical entities to
self-adjust or self-organize under the influence of external forces. The issue
then is the transformation from one material state to the next. Indeed, the
laws of physics and mechanics can be invoked to characterize the transfor-
mation as it refers to the skeleton made of inert particles. However, the mate-
rial does exhibit the attribute of natural self-adjustment to organize such that
it responds to the external forces in the optimum way.

 

1.2.3 Local and Global States

 

It is apparent that what we have discussed above refers to “local” material
states, for “finite” physical systems such as engineering structures. How-
ever, in the global or universal sense, similar manifestations occur in which
the initial 

 

premordial

 

 or 

 

pristine

 

 material is transformed continuously under
cosmic forces and approaches in the limit the ultimate state. It is possible
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that what happens at the local level is perhaps the reflection of what hap-
pens at the global level. Our interest is the local behavior.

 

1.3 Engineering Materials

 

Engineering materials are difficult to characterize in their initial natural or
artificially manufactured states. Characterization of their behavior under a
variety of possible forces—natural, mechanical, and environmental—also
poses a challenging problem.

Human understanding of the behavior of materials, which are a mixture of
“continuous” and “discontinuous” particle systems 

 

at the same time

 

, involves
mental (human), physical, and mathematical models; the latter are often used
to develop numerical models for solution by the 

 

artificial mind

 

, which is the
modern computer.

 

1.3.1 Continuous or Discontinuous or Mixture

 

The long pursuit of the mechanics of engineering materials has grappled with
the notion that the materials’ systems can be treated as 

 

continuous

 

, such that
particles or clusters at the level of interest do not separate or do not overlap.
A moment’s mental reflection and probing would reveal that particles at any
level are not continuous as there is always a gap, or void (“shunya” or space),
between them. At the same time, there is some known and some unknown
and mysterious thread or force or synchronous cohesion that connects the par-
ticles. Even if all physical and chemical forces that contribute to this connec-
tion are identified and quantified, there “appears” to exist a force beyond all
quantifiable forces that remains to be identified and quantified. Some would
say that when the complete understanding occurs there would be no further
need to characterize materials, and all will become (again) one material
whole! Also, this makes us aware of the fact that the models we develop to
characterize the material behavior are only approximations, as they do not
completely characterize the response of the entire, or 

 

holistic,

 

 system.
Thus, the limitation of our understanding of the complex discontinuous system

requires us to treat materials as continuous. The reality appears to be that both
continuous and discontinuous exist simultaneously, i.e., a particle at a given
level is connected and disconnected to others at the same time. Hence, in a
general sense, almost all reasonably successful efforts and models, in physics
and mechanics, until now, have involved some sort of superposition or impo-
sition of discontinuity on continuity. Then, the available continuum models or
theories are very often enhanced or enriched by models or constraints to sim-
ulate discontinuity.

It is with the foregoing appreciation of the limitation of our modelling that
we will deal with materials that are both continuous and discontinuous at the
same time.
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1.3.2 Transformation and Self-Adjustment

 

The local and global transformation of the material world, in its physical man-
ifestation and in its “hidden” metaphysical attributes, interests us. One may
say that it is this transformation that makes motion or “life” and that makes
our endeavors necessary and possible. If we restricted ourselves to the phys-
ical world and the transformation did not occur, there would be no problem
to solve. Under the external influences, however, the present state of the mate-
rial changes, and the material modifies its present state to a new state under
the given influences. It is the transformation from the present to the new state,
so as to define the new state, a process that involves motion or movement of
particles, that is the objective of mechanics of materials.

How and why the transformation occurs are important issues in under-
standing the transformation. The particles constituting the material “yield,”
or move, so as to resist optimally the external influences, which, in our case,
are the mechanical and environmental forces. The particles may come
together, move away from each other, rotate by themselves, and

 

�

 

or slip with
respect to each other. These motions result in the changes in the physical
state of the material, which is usually manifested as changes in the shape,
size, and orientation of the material body that is comprised of the particles.
Hence, in order to define the new state of the body, it becomes necessary to
evaluate the motions under the loads the body is carrying so that we can say
with certainty that the engineering body would not “fail,” i.e., break apart in
the local sense, and move away unacceptably.

The Oriental (Indian and Chinese) and early Western (Greek) thinkers
believed that all matter is “living” (6, 7, 10, 11). The idea that a material responds
only mechanistically through physical response (motions), which is the founda-
tion of modern science, arose when the attribute of life or consciousness was
eliminated from the part of the material world, which we defined as “dead” or
“nonliving.” This is tragic, since an appreciation of “life force” in materials can
not only help in developing enhanced understanding, but can also lead to the
humanization of technology (12).

If the quality of self-adjustment is accepted, the pursuit of the understand-
ing of material behavior may open new vistas. At this time, the issue can be
controversial—particularly in the treatment of mechanics of materials in the
technological context—but its appreciation may be interesting to those who
would like to read further, think it over, analyze, speculate, and accept or
reject it.

 

1.3.3 Levels of Understanding

 

Engineering materials involving a mixture of continuous and discontinuous
parts represent complex and nonlinear systems. Hence, it is usually not pos-
sible to treat their behavior as simple linear responses or to treat them as a
direct accumulation of responses of individual particles or a cluster of parti-
cles; from now on, both will be referred to as 

 

particles

 

. This is partly because
such an accumulation would lose at least a part of the influence due to the
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interconnectedness of the particles. For instance, consider the motion of a
handball that bounces repeatedly on the walls of the court. If the motion of
the ball were a collection of linear events, it would theoretically be possible
to predict its location at any time. However, as the ball itself is not ideally
smooth and the walls and floor of the court are rough and undulated, the
motion of the ball is nonlinear, and it is almost impossible to predict its 

 

exact

 

location with time. In this connection, it is interesting to paraphrase Bak and
Chen (13): it is not realistic to predict the behavior of a large interactive sys-
tem by studying its elements and microscopic mechanisms separately,
because the response of such a system is not proportional to the disturbances.
This implies that the theories for modelling the material behavior based on
the micromechanics approach may not provide a rational means of represent-
ing the behavior of the 

 

complex interacting

 

 systems such as engineering mate-
rials. Indeed, like many available models, they do provide an approximate
simulation of the behavior. In the micromechanics models, the behavior of
particles is first defined at the local particle (micro-) level, in terms of, say, its
shear and normal responses. Then the local or microlevel (constitutive)
responses are accumulated to obtain the overall or global response. And very
often, the constitutive response at the microlevel is defined based on tests on
finite-sized specimens. This appears to be a contradiction.

It would seem appropriate that approaches to define the behavior at the
macro- or global level based on particle 

 

mechanisms

 

 that allow for interact-
ing phenomena at the local or microlevel and changes in the microstruc-
ture may lead to more consistent theories for the nonlinear and complex
material systems. The DSC presented in this book is one such approach.
The self-organized criticality (SOC) concept (13; Appendix I) to define crit-
ical or threshold states during microstructural changes is another approach
that provides models for instability and collapse by considering the inter-
acting mechanisms rather than particle-level descriptions. As will be dis-
cussed later, the DSC provides for the instability, or collapse, as well as
the precollapse response. Hence, it is considered to be general and uni-
fied; Appendix I presents a review of and comparison between the DSC
and SOC.

 

1.3.4 The Role of Material Models in Engineering

 

Understanding the behavior of matter or materials is a continuing human
pursuit involving qualitative and quantitative considerations. The former is
based essentially on intuitive and empirical evidence or experience. Intui-
tive understanding is often based on philosophical and metaphysical inter-
pretations, whereas the empirical comprehension is based on empirical
evidence that leads to simplified models. Although they can describe the
response of the material approximately, models based strictly on empirical
data may not lead to the fundamental approaches often required for the
basic description of physical and engineering systems.
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Hence, it becomes necessary to develop models based on a combination
of mathematics and mechanics, and empirical data, to lead to the calculation of
practical quantities such as deformations and stresses required for analysis
and design. This approach leads to mathematical expressions or models that
connect the response of materials to the (external) mechanical and environ-
mental forces. This connection depends on the behavior of materials, their
constitution, and their characteristics. We call these expressions 

 

constitutive
laws

 

, 

 

constitutive models

 

, or 

 

constitutive equations

 

. Constitutive laws play a vital
role in the prediction of the response of engineering systems. Their develop-
ment requires consideration of physical laws as well as observations of their
behavior under laboratory and/or  field conditions that simulate the factors
such as loading, geometry, and constitution of materials.

The behavior of engineering systems composed of materials as influenced
by the foregoing factors is usually complex. Hence, it is often not possible to
employ solution procedures such as those based on closed-form mathemati-
cal solutions of differential equations with simplifying assumptions regard-
ing the material properties, geometry, etc. Hence, modern computational
methods are often used to solve such nonlinear problems. As a consequence,
it becomes necessary to introduce the advanced and realistic constitutive
models in such computational procedures as the finite-element, boundary-
element, and finite difference methods. Here, the complexities and nonlinearity
require special attention toward the robustness and reliability of the com-
puter predictions.

 

1.4 Disturbed State Concept

 

This book deals with the disturbed state concept (DSC), which is based on the
well-recognized idea that a mixture’s response can be expressed in terms of
the responses of its interacting components. In the case of the same engi-
neering material, the components are considered to be material parts in the
relatively intact (RI) or “continuum” state and the fully adjusted (FA)
state, which is the consequence of the self-adjustment of the material’s
microstructure and can involve decay (damage) or growth (healing).
Before the load is applied, the material can be in the continuum state with-
out any disturbance such as anisotropy, microcracking, and flaws; in other
words, initially the disturbance is zero. Alternatively, the material may
have initial anisotropy, microcracking, and flaws; in that case, there is non-
zero initial disturbance.

As loading progresses, the material transforms progressively from the RI
state to the FA state through a process of internal 

 

self-adjustment

 

 of its micro-
structure. This process can involve local (microlevel) unstable or disordered
motions of particles tending toward the FA state, in which there may occur
“isotropic” particle orientation. A special case of such an orientation is the
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development of distinct cracks, which can be considered to be the 

 

null

 

 isotro-
pic state, as in the case of the classical continuum damage models. It is recog-
nized that the material experiences growth and coalescence of microcracks,
which may lead to distinct cracks. However, the material may often “fail”
before the formation of distinct cracks. Hence, the assumption that the FA is
the cracked state and acts like a “void” may not be realistic because as the
material parts in the FA state are surrounded by the RI material, they possess
a certain stiffness and strength. As a result, the RI and FA parts involve 

 

inter-
acting mechanisms

 

 that contribute to the response of the mixture. The FA state
is asymptotic and cannot be measured in the laboratory because, before it is
reached, the material ‘‘fails’’ in the engineering sense. The FA state is usually
defined approximately. For example, it can be defined based on the ultimate
(asymptotic) disturbance, 

 

D

 

u

 

 (Fig. 1.2). The asymptotic value (

 

D 

 

�

 

 1) is not
measurable when the final FA state is reached.

In the DSC, the disturbance that connects the interacting responses of the
RI and FA parts in the same material (or of the components as reference mate-
rials) denotes the deviation of the observed response from the responses of
the reference states (Fig. 1.2). Thus, depending on the material properties,
geometry, and loading, it can represent both decay (damage) or growth
(healing or stiffening) in the observed response. For instance, in some cases,
the microcracks may grow continuously and result in damage, softening, or
degradation of the response, while in other cases, healing (of microcracks)
may occur and lead to strengthening or stiffening of the response. Thus, the
DSC can allow for the characterization of both the damage and stiffening
responses.

As the formulation of the DSC involves both the RI (continuum) and FA
states, it provides a systematic 

 

hierarchical

 

 basis for a wide range of models to
characterize the material behavior. For example, if there is no disturbance, the
DSC specializes to continuum models such as elasticity, plasticity, and visco-
plasticity. If the material behavior involves microcracking and fracturing, 

 

D

 

is nonzero and various models such as damage with microcrack interaction
are obtained. Because the DSC involves interaction between the responses of
material parts in the reference states, it can allow for nonlocal effects and
characteristic dimension without external enrichments such as Cosserat and
gradient theories.

 

1.4.1 Disturbance and Damage Models

 

There is a basic difference between the DSC and the classical continuum
damage approach (14). In the DSC, we start from the idea that the material
under load can be considered a mixture involving continuous interaction
between its components. Depending on the mechanical and environmental
(thermal, fluid, chemical, etc.) loading, the material mixture can undergo
degradation in its strength and stiffness, which leads to the decay or damage-
type phenomenon. This is similar to the classical damage approach.
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However, the starting point in the damage approach is different; it starts
from the assumption that a part of the material is damaged or cracked. The
observed behavior is defined based essentially on that of the remaining
continuum or undamaged part. Hence, the damaged part involves no inter-
action with the continuum part. However, the so-called damaged part may
usually become a finite crack or void 

 

only

 

 near the end or failure, because
in reality the ‘‘damaged’’ part is the result of the continuous coalescence of
microcracks and it possesses certain strength. In the DSC, the FA part rep-
resents the distributed, coalescent smeared microcracks, with appropriate
deformation and strength characteristics. As a result, the RI and FA parts
interact continuously, which is absent in the classical damage model. In
order to introduce the microcrack interaction, the damage model requires
“external” enrichments such as through kinematics and forces in a (large)
number of microcracks, which can add significant complexities. Moreover,
as the constitutive behavior of two or more microcracks is not readily meas-
urable, inconsistent assumptions are needed to define the behavior. For
instance, very often the microcrack behavior is defined based on test data on
macro- or finite-sized specimens.

On the other hand, the DSC includes in its formulation the microcrack
interaction through the interacting mechanisms between the RI and FA
parts. Also, the definition of the behavior of the material parts in the RI and
FA parts relies on the observed (laboratory) behavior of macrolevel or
finite-sized specimens. Thus, the DSC model is rooted in the microstruc-
tural consideration but does not require constitutive definition at the parti-
cle or microlevel. This is considered a distinct advantage compared to the
damage models with (external) microcracks interaction and the microme-
chanical models.

The other major difference between the DSC and damage models is that the
foregoing viewpoint in the DSC allows for the possibility of growth or heal-
ing, leading to strengthening or stiffening, respectively, of the response of the
material under mechanical and environmental loading. Such behavior is pos-
sible in many situations, including the case when the material undergoing
microcracking and degradation up to a certain threshold or critical deforma-
tion state may heal due to factors such as unloading, chemical reaction, oxi-
dation, and locking of microcracks or dislocations. Thus, the DSC includes
the possibility of both decay and growth processes, whereas the damage
model allows mainly for the degradation or softening response.

 

1.4.2 The DSC and Other Models

 

Comparisons between the DSC and other models such as the continuum and
damage approach, with enrichments like the gradient and Cosserat theories,
and the micromechanics approach are presented in other chapters (e.g.,
Chapter 12). Appendix I presents a review of and comparison between the
DSC, critical-state, and SOC concepts.
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1.5 Scope

 

The scope of this book involves the theoretical development, calibration, and
validation of the DSC and its specialized versions.

 

1.5.1 Outlines of Chapters

 

Brief descriptions of this book’s other chapters, including their computa-
tional, validation, and mathematical characteristics, follow.

In Chapter 2 we present preliminaries of the DSC, including its unified char-
acter, mechanisms of deformation, the derivation of the DSC equations, and
specializations such as composite systems and porous materials. Compari-
sons of the DSC with other models, and with the SOC, are also presented;
however, details of such comparisons are given in Chapter 12 and Appendix I.

The details of the RI and FA states and the disturbance are presented in
Chapter 3. Chapter 4 gives details of the incremental DSC constitutive equa-
tions, their specializations, and the parameter determination for the distur-
bance function and models for the fully adjusted state.

Chapters 5 to 8 discuss various theories—elasticity, plasticity, hierarchical
single-surface plasticity, and viscoplasticity—based on continuum mechanics
including thermal effects, for characterizing the RI response. They include
derivations and examples of DSC in which elasticity, plasticity, and visco-
plasticity are used to characterize the RI response. Chapter 7 describes the
hierarchical single-surface (HISS) plasticity models commonly used for char-
acterizing the RI response. These chapters present examples of a number of
materials, including the determination of material parameters from laboratory
tests and validation of the constitutive models with respect to the laboratory
behavior for the test data used for finding the parameters and 

 

independent

 

 tests
not used to find the parameters.

Chapter 9 presents the DSC for saturated and partially saturated materials, in
which formulations and validation of the DSC for saturated and partially satu-
rated materials including instability (liquefaction) are described. Chapter 10
deals with characterizing the behavior of “structured” materials, such as stiff-
ening or healing.

Chapter 11 describes the development of the DSC for interfaces and joints
using the same mathematical framework as for the “solids.” It includes param-
eter determination as well as validation with respect to laboratory tests for a
number of interfaces and joints. Microstructure, localization, threshold tran-
sitions, instability and liquefaction, and spurious mesh dependence are dis-
cussed in Chapter 12.

Chapter 13 gives details of the implementation of the DSC models in com-
puter (finite-element) procedures. It includes mathematical characteristics of
the DSC, predictions and validations of the observed behavior of a number
of practical boundary-value problems, and descriptions of computer codes.
Finally, conclusions and future trends are presented in Chapter 14.
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Appendix I offers a review of and comparisons among the DSC, critical-
state (CS), and SOC concepts. Computer procedures for the determination
and optimization of material parameters, including validations of laboratory
test data, are presented in Appendix II.
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Matter is continuous and discontinuous, ordered and disordered, finite
and infinite at the same time. Each component has asymptotic attributes
that cannot be defined exactly. They culminate or dissolve in each other,
can undergo decay and growth at the same time, and yield the intercon-
nected composite that can be defined and understood locally.

 

2.1 Introduction

 

A deforming material is considered to be a mixture of “continuous” and “dis-
continuous” parts. The latter can involve relative motions between particles
due to microcracking, slippage, rotations, etc. As a result, the conventional
definition of stress (

 

�

 

)

 

�

 

 

 

at a point

 

 given by

(2.1a)

where 

 

P

 

 is the applied load and 

 

A

 

 is the area normal to 

 

P

 

, does not hold; Fig.
2.1(a). The implication of  is that the stress is defined at a point. In
other words, all points in the material elements retain their neighborhoods
before and during load. As a result, abrupt changes in the stress at neighbor-
ing points cannot exist, as no cracks or overlaps are permitted.

Now, consider a material element that contains discontinuities due to
microcracking and fractures, initial or induced voids or flaws. In this case, the
definition of stress, Eq. (2.1a), will not hold, as the stress may change—and
abruptly—from point to point in the material element. In other words, the so-
called local (at a point) relevance of stress loses its meaning when discontinu-
ities exist. As a result, it becomes necessary to define a weighted value of
stress, , to represent its 

 

weighted

 

 distribution over the material element:

(2.1b)

where  is the weighted 

 

nonlocal

 

 area that includes the effect of discontinuities
in the “finite” area over which  is now evaluated (Fig. 2.1(b)). Such an
approach is consistent with the physical necessity for the stress   to include
the effects and attributes of the happenings (deformations) in the neighboring

�
P
A
----

A 0→

�

A 0→

�̃

�̃
P
Ã
----�

Ã
�̃

�̃

 

�

 

Sign convention: For materials that are loaded mainly in tension, the (normal) stresses are con-
sidered to be positive. The compressive (normal) stresses are considered positive for material
loaded mainly in compression.
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FIGURE 2.1 

 

Definitions of stress.
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regions. The DSC allows consideration of the nonlocal effects by defining the
stress (Chapters 3 and 12) in a weighted sense, such that the effect of the dis-
turbance (microcracking, etc.) is included in the observed or actual stress.

As introduced in the previous chapter, the 

 

disturbed state concept

 

 (DSC) is
based on the basic physical principle that the behavior exhibited through
the interacting mechanisms of components in a mixture can be expressed
in terms of the responses of the components connected through a coupling
function, called the 

 

disturbance function

 

 (

 

D

 

). In the case of the mechanical
response of deforming engineering materials, the components are consid-
ered to be reference material states. For the element of the 

 

same

 

 material,
the reference material states are considered to be its (initial) continuum or
relative intact (RI) state, and the fully adjusted (FA) state that results from
the transformation of the material in the RI state due to factors such as par-
ticle (relative) motions and microcracking. We first consider the DSC for the
case of deformations in the 

 

same

 

 material. Then we shall consider the DSC
for deforming a material element composed of more than one (different)
material.

 

Analogies for Reference States

 

. If a solid is heated at a certain tempera-
ture, it melts or liquefies. The solid and liquid states can then represent two
reference states. If the liquid is heated further, it becomes a gas. Then the liq-
uid and gas states can represent the reference states. If a cube of ice melts to
water, the ice and water states can be treated as the reference states.

A schematic of the underlying idea in the DSC is shown in Fig. 2.1(c). The
material possesses asymptotic (relative) intact and fully adjusted states (Fig. 2.2).
The 

 

absolute intact

 

 state may be considered to be the condition of the material, say,
at the 

 

theoretical maximum density

 

 (TMD). However, as explained in Chapter 1, the
material can exist at other densities, which can be adopted as RI states. Selection
of the RI state depends on the characteristics of the material and available test
data. For instance, the linear elastic response of a continuum without micro-
cracks can define the RI (e) response with respect to the nonlinear elastic
(observed, denoted by 

 

a

 

) response affected by microcracking; see Fig. 2.2(a). The
elastoplastic (ep) behavior without friction can define the RI response with
respect to the elastoplastic behavior with friction; see Fig. 2.2(b). The elastoplastic
response can be adopted as the RI response with respect to the behavior affected
by microcracks and softening; see Fig. 2.2(c). Figure 2.2(d) shows a schematic of
softening and stiffening responses in which the RI response is characterized as
elastoplastic.

The asymptotic FA state, (FA)

 

∞

 

, is the final condition to which the material
approaches under external loading [Fig. 2.2(c)]. The behavior of materials at
the final state is not measurable in the laboratory but may be defined as the
asymptotic value that can be identified approximately. Such a state used in
the modelling is considered quasi-FA ( ), which, for convenience, is
referred to simply as the FA state.

The behavior of a material differs when affected by factors such as initial
pressure, density, and temperature. Also, there can be more than one RI and
FA states. However, the response of the material parts in the RI and FA states

FAFA

 

ch-02  Page 20  Monday, November 13, 2000  5:55 PM



© 2001 By CRC Press LLC

  

can be expressed in terms of the foregoing factors, which leads to an inte-
grated (DSC) model. This aspect is discussed later in the chapter.

 

2.1.1 Engineering Behavior

 

Figure 2.3(a) and (b) show schematics of the response of a material element
under the shear stress , the second invariant of the deviatoric stress
tensor 

 

S

 

ij

 

, and 

 

J

 

1

 

, the first invariant of the total stress tensor, 

 

�

 

ij

 

, which is
related to the mean pressure, 

 

p

 

, as 

 

p

 

 

 

�

 

 

 

J

 

1

 

�

 

3. It is assumed that the material
is initially isotropic and remains isotropic during deformation.

Pure shear stress (with 

 

J

 

1

 

 

 

�

 

 0) will cause continuing shear deformations that
will lead to an observed engineering “failure” condition (marked 1 in Fig. 2.3(a))
that can be measured in the laboratory. It can be identified as the peak stress or
asymptotic or ultimate stress with respect to the behavior in the final range of
the stress–strain behavior. Upon further loading, the material may disintegrate

 

FIGURE 2.2

 

RI(i), observed (a), and FA (c) responses.

J2D
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fully and separate into individual particles (1

 

�

 

); this response cannot be meas-
ured. Under pure (compressive) mean pressure (

 

�

 

0), the material com-
pacts and strengthens continuously and will reach the measurable state (2) and
nonmeasurable state (2

 

�

 

).
A combination of   and 

 

J

 

1

 

 leads to measurable ultimate or failure
states defined by the envelope shown in Fig. 2.3(a). The nonmeasurable or
asymptotic states may lead to the disintegration of the element under dif-
ferent combinations of  and 

 

J

 

1

 

.
Figure 2.3(b) depicts   vs.  response under pure shear stress (

 

J

 

1

 

 

 

�

 

0); here  is the second invariant of the deviatoric strain tensor, 

 

E

 

ij

 

. For
pure mean pressure , the volume will change (decrease) continu-
ously. With both   and 

 

J

 

1

 

, the stress–strain response affected by both the

 

FIGURE 2.3

 

Material states during loading.
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shear stress and mean pressure will result. Then the RI response can be char-
acterized by using elastic, elastoplastic, or another suitable model (Fig. 2.2).
The FA response can be defined at the critical state (c) the material approaches
under given mean pressure.

 

Historical Note.

 

The basic idea underlying the DSC derives from the
model for overconsolidated geologic materials proposed in 1974 by Desai (1)
in the context of the solution of the problem of slope stability. It was postulated
that the behavior of overconsolidated (OC) soil can be decomposed into that of
the normally consolidated (NC) and that due to the influence of overconsol-
idation that entails microcracking and shear planes; see Fig. 2.4(a). Then the
observed softening response was expressed in terms of the behavior under the
NC state and the effect of overconsolidation. The observed response (stiffness)
was then expressed in terms of the stiffness of the two parts. Desai (2) proposed
the concept of the residual flow procedure (RFP) for the solution of free surface
flow (seepage) in porous media (3, 4); a review is presented by Bruch (5). Here
the response was decomposed into two reference states: the fully saturated
with the permeability coefficient, 

 

k

 

s

 

, and the “residual” response given by the
difference between the saturated and unsaturated (or partially saturated) con-
ditions due to the difference in permeability coefficients, 

 

k

 

s

 

 

 

�

 

 

 

k

 

us

 

 (Fig. 2.4(b)).
Thus, the two reference states were given by the saturated state and the asymp-
totic unsaturated state at very high negative pressures (

 

p

 

).
The DSC presented in this book can be considered as a generalization of the

foregoing two developments in stress analysis and flow through porous
media.

 

2.2 Mechanism

 

An initially intact material, without any flaws, cracks, or discontinuities, will
transform continuously with loading, unloading, and reloading, which is often
referred to collectively as loading, from the RI state to the FA state [Fig. 2.1(c)].
If the material before the loading contains initial flaws, cracks, and

 

�

 

or disconti-
nuities (or disturbance), the resulting initial disturbance will influence the sub-
sequent behavior. As the deformation progresses, the extent of the material
parts, which may be distributed randomly over the material element depend-
ing on factors such as initial conditions and loading, the FA parts can grow
or decrease, i.e., lead to degradation or stiffening, respectively [Fig. 2.2(d)]. In
the case of the continuous growth of the FA state, the material part in the RI
state decreases continuously, during which the microstructural changes can
involve the annihilation of particle bonds, leading to a decay process. In the
limit, if it is possible to continue the load, the entire material will approach the
(FA)

 

∞

 

 state, in which the material particle may break and separate completely,
and then the disturbance approaches the value of unity. As this state is asymp-
totic, it is not realized in practice—in the field or in the laboratory—because the
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material “fails,” in the engineering sense, in terms of allowable deformation
and

 

�

 

or load before the (FA)

 

∞

 

 state can be reached. Hence, from practical consid-
eration, it often becomes necessary to identify and use approximately the  
state when the material enters the ultimate residual state for given initial con-
ditions in the engineering sense when the disturbance 

 

�

 

 

 

D

 

u

 

 (

 

�

 

 1.0). This state
is used as the FA state from a practical viewpoint (Fig. 2.2).

In the DSC, the microstructural changes may be such that the material may
stiffen due to strengthening of the interparticle bonds [Fig. 2.2(d)]. This may
occur due to factors such as predominant hydrostatic stresses that lead to

 

FIGURE 2.4

 

Disturbance in stiff or structured soil, and flow through a partially saturated medium (1–3).

FA
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increasing density, the structured nature of material, chemical and thermal
effects that lead to increased interparticle bonding and unloading, or rest
periods (Chapter 10).

The RI state is often simulated by using such continuum theories as elastic-
ity, plasticity, and viscoplasticity for which well-established formulations are
available. These are discussed subsequently in this chapter and in Chapters
5 to 8. Here, we first discuss some aspects of the FA state.

 

2.2.1 Fully Adjusted State

 

For engineering materials, the final state at “infinite” or very high loading
(Fig. 2.2) may result in a totally disintegrated state in which the separated
material particles tend to configure into a “specific” volume. Such a (‘’loose’’)
material may not have any strength at all unless it is confined. The final dis-
integrated material state may be considered analogous to the idea of treating
the cracked or damaged material part as a “void,” as it is assumed in the clas-
sical damage mechanics approach (6, 7). One of the main differences between
the DSC and the damage concept can be stated here. In the DSC, it is consid-
ered that the FA material, in the range of engineering interest, 

 

does 

 

possess
certain deformation and strength properties. This is partly because the FA
material parts are confined or surrounded by the material parts in the RI state
[Fig. 2.1(c)]. Furthermore, in contrast to the damage concept, in which the
damaged parts grow continuously, resulting in the continuous loss of
strength, in the DSC, the material can also gain strength or stiffen during
loading. In other words, under certain loadings and physical conditions, the
FA state can entail strengthening. Then, disturbance will be “negative” or
have a value greater than unity, indicating strengthening or a growth process.
Thus, the DSC allows for the characterization of both degradation (or dam-
age or decay) and stiffening (or healing) in material responses.

The idea of the critical state (CS) in soil mechanics has a connotation similar
to the FA state. The material 

 

approaches

 

 the critical state at which there is no
further change in volume, i.e., the material assumes an invariant (specific) vol-
ume, void ratio, or density under the constant shear stress reached up to that
state and given initial mean pressure (8, 9). In practice, however, e.g., in the
laboratory, it is usually not possible to measure and identify the 

 

exact

 

 critical
state. It is asymptotic, like the FA state. For engineering purposes, we identify
and can often adopt the CS as the FA state when the measured volume change
is 

 

approximately 

 

zero in the ultimate range of loading. Indeed, there may be
instantaneous states of zero volume changes like the point of transition from
compactive to dilative volume change in granular materials, where one can
identify the point almost exactly; however, the FA state is considered to occur
in the ultimate range. To summarize, the definition of material response at the
FA state must be approximate because the measurement system would cease
to operate when the material specimen “collapsed” from an engineering and
a practical viewpoint.
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As a further explanation, let us consider two lumps of a material with dif-
ferent initial volumes, and with irregular shapes, as in Fig. 2.5. The irregular-
ities or nonsymmetries of the two lumps are the lumps’ initial attributes. Now,
let us mold both specimens by applying external pressure to make them “ide-
ally” spherical. After the levels of molding efforts have been increased, both
lumps will 

 

tend

 

 toward spherical shapes with different specific, critical, or
fully adjusted volumes. It is apparent that it will be (humanly) impossible to
achieve the perfect or absolute spherical shapes, with no attributes or irregu-
larities or biases. Hence, we must accept approximate spherical shapes with
volumes  and  at certain levels of effort (loading) to represent the FA state
and use them in our modelling pursuit (Fig. 2.6(a)).

Let us consider the volume of the solid particles as they merge together,
when all the particles’ attributes have been annihilated, and the volume, ,
at the FA state is approached. The schematic plots of 

 

V

 

�  

 

for the two lumps
are shown in Fig. 2.6(a). The volume of both approach unity, while  and

 are the quasi-volumes in the FA state. It is useful to note that the volume
 (at the FA state) is a unique characteristic for a given set of physical char-

acteristics such as initial density, particle fabric, shape and size, and loading,
and can represent the characteristic dimension.

 

FIGURE 2.5

 

Molding of clay lumps.

 

FIGURE 2.6

 

Behavior of clay lumps.

V1 V2
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The behavior of an engineering material (specimen) can be understood
similarly. The material has initial attributes, like the nonsymmetries caused
by anisotropy, flaws, and defects. Now, consider that such a material is sub-
jected to increasing hydrostatic or isotropic load (pressure) [Fig. 2.6(b)]. As
the pressure, like the molding effort for the lumps, is applied, the nonsymme-
tries or biases will be annihilated and the material will 

 

tend

 

 toward a “con-
densed” (volume of solids) symmetrical or isotropic state with no attributes
of anisotropy. The limiting isotropic state, when the nonsymmetry or anisot-
ropy (

 

a

 

n

 

), in Fig. 2.6(b), is destroyed completely, will be impossible to achieve
in practice and in the laboratory. However, approximate states   can
be identified, for all practical purposes, to represent the isotropic state, which
can represent the FA state. As is indicated in Fig. 2.6(b), the material with ini-
tial attributes such as anisotropy, flaws, and different particle sizes will tend
toward the isotropic state at different levels of load and effort. Each can have
its own or approximate FA state, which can be adopted as the asymptote to
each response. Indeed, the final asymptotic state is the perfect isotropic state,
i.e., A

 

1

 

A2 A3 ... A, where A denotes the final FA state.

2.2.2 Additional Considerations

The disturbance, D, is expressed as the ratio of the material volume, , in
the FA state to the total volume, V, of the material element. Hence, for direct
evaluation of D, one must evaluate the material parts in the FA states during
deformation. Advanced nondestructive techniques based on X-ray comput-
erized tomography and acoustic measurements are being developed, and
they can be used to identify the FA states involving evolution of density
clusters. However, they are still not fully available. Hence, it is not possible
to define D based on such physical measurements. Some limited results are
available, however. Figure 2.7 shows the vertical reconstruction of a cylin-
drical specimen (50.8-cm diameter, 609.6-cm height) of a grout material
tested under triaxial loading by using X-ray computerized tomography (10).

FIGURE 2.7
The vertical reconstruction of a failed grout specimen under triaxial compression. (From
Ref. 10, with permission.)

an1, an2( )

→ → → →

Vc
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The measurements were obtained at different stages of loading; Fig. 2.7
shows results near (before) the peak stress. The dark regions represent
material parts that have approached the critical density and can be treated
as being at the FA state. The dark zones were integrated to obtain the vol-
ume  at the FA state. The ratio D �  was about 0.17, which compared
well with the average values of D at that stage of deformation for similar
materials (11).

In lieu of direct measurements of the disturbance , it becomes necessary to
define disturbance in terms of internal variables such as accumulated plastic
(irreversible) strains and (dissipated) mechanical energy under thermomechani-
cal and other loadings. Such internal variables reflect the microstructural
changes that cause disturbance (damage and�or strengthening). Disturbance can
also be related to observed laboratory response in terms of such measured quan-
tities as stresses, volume or void ratio change, porosity change, effective stress
(pore fluid pressure), saturation degree, and nondestructive properties such as P-
and S-wave velocities (11–14). The use of these phenomenological approaches
permits the determination of parameters in the expressions for disturbance;
details are given in Chapter 3 and other chapters.

In defining the disturbance (damage or strengthening) in a deforming
material, we will be able to take advantage of the similarity between decay
and/or growth in natural systems. For example, the mechanism and trend of
growth or decay of a living organism can be considered to be similar to
strengthening or decay in a deforming material. As a result, mathematical
functions that express decay and growth can be adopted to describe damage
and strengthening.

Consider a collection of granular (spherical) material particles, as shown in
Fig. 2.8. The initial microstructure involves air spaces and contacts, whose
magnitudes will affect the density. The contacts contribute to the deformation
and strength properties through interparticle cohesion and friction. During
deformation under compressive pressure accompanied by shear stress, the
particles’ contacts can deform, slip, rotate, and break. Furthermore, the parti-
cles can move in the air spaces, leading to the change in density.

An initially loose material will experience continuing compaction and an
increase in the density or a decrease in the volume or void ratio, e (volume of
voids�volume of solids). In general, the material will exhibit a nonlinear and
continuously hardening response, as seen in Fig. 2.9(a). An initially dense
material first compacts as the particles move in the voids, and then experi-
ences an increase in the volume or void ratio or a decrease in the density (Fig.
2.9(b)). The latter is called dilation, which is caused predominantly by the
upward sliding of the particles.

Depending on the initial nature of the microstructure (distribution of voids,
etc.), density clusters can form at different locations, which may tend to the crit-
ical invariant density or void ratio (see Fig. 2.8). Such an asymptotic state can
represent the FA state. As the loading progresses, a greater number of FA state
zones develops; in the limit the entire material tends toward the fully adjusted
state.

Vc Vc
�V

Vc( )
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In the case of the initially dense material, behavior similar to that for the loose
material may continue until the transition from compaction to dilation accom-
panied by microcracking or breakage of particle bonds. This process will con-
tinue and grow near and after the peak and in the degradation or softening
regime. Increased levels of microcracking, slippage, and rotation of particles
will occur in the softening regime (Fig. 2.9), with locally unstable changes in the
microstructure. Then the microstructure may experience an intense instability,
which can be identified by the critical disturbance (Dc) at the initiation of the
residual state, leading to the asymptotic FA state at which there will be no
change in volume or density.

It is possible that during deformation, factors such as chemical reactions,
increased compaction, or locking of particle contacts or dislocations can cause
an increase in the stiffness and strength of the particle bonds. In that case, after

FIGURE 2.8
Particle motions, degradation or softening, and healing.
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a threshold value of deformation or strain ( ), [Fig. 2.9(a)] is reached, the mate-
rial may stiffen or heal; this can lead to decreased disturbance. The pore-collapse
mechanism in porous rocks, the drained post-liquefaction behavior of saturated
sands, and the locking of dislocations in silicon with oxygen impurity represent
examples of such softening and stiffening behavior (Chapter 10).

Figure 2.10 shows the behavior of a porous chalk under hydrostatic loading
(15). Here, a cylindrical specimen of the chalk is subjected to confining or
hydrostatic stress, and the resulting volumetric strains �	 (�ii) are measured
[Fig. 2.10(a)]. The acoustic P- and S-wave velocities are also measured during
deformation; see Fig. 2.10(b) and (c).

The initial response of the material is essentially linear elastic (E) with a
decrease in the volume; a positive volume indicates a reduction in volume.
During this phase, some of the open spaces, initial microcracks, and particle
contacts are closed (15); as a result, the acoustic velocities increase. After about

FIGURE 2.9
Schematic of behavior of loose and dense materials.

�1
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1.0% of the volumetric strain, the particle bonds are broken and the contact
cohesion is reduced or lost. As a result, the P- and S-wave velocities decrease
during this phase, when the collapse of pores occurs (PC). After critical �	 �
6.0%, the material exhibits stiffening (or healing). During this consolidation
phase, the acoustic velocities increase as a result of the reestablishment of the
particle contact and bonds.

It can be said that the disturbance will be essentially zero during the initial
phase, will increase during the pore-collapse phase, and then will decrease
during the stiffening phase. Details of the formulation of the DSC for this
behavior are given in Chapter 10.

FIGURE 2.10
Stress–strain, compression, and shear wave responses under hydrostatic compression of
Ekofisk Chalk (15).
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2.2.3 Characteristic Dimension

It is appropriate to mention that factors such as the initial mean pressure, the
density or void ratio, and the fabric, geometry, and size of particles affect the
zone of influence around a point in a material element. The zone of influence is
considered to be related to the internal or characteristic dimension. In the DSC,
the invariant mass or volume  which many materials approach during
deformation can provide an important measure for the characteristic dimen-
sion. These aspects are discussed later, e.g., in Chapter 12.

2.3 Observed Behavior

The deforming material is considered a mixture of the two interacting material
parts in the RI and FA states. The RI and FA states are termed as reference
states. Then the observed or actual response of the material is expressed in
terms of the responses of material parts in the reference states. The distur-
bance, D, denotes the deviation of the observed response from those of the
reference states. Figure 2.11 shows a symbolic and schematic representation
of disturbance in the DSC. The observed or average response (denoted by a)
is then expressed in terms of the RI response (denoted by i) and the FA
response (denoted by c) by using the disturbance function, D, as an interpo-
lation and coupling mechanism. The behavior of the RI and FA materials, as
well as the disturbance function, needs to be defined from laboratory tests. 

2.4 The Formulation of the Disturbed State Concept

Let us first consider the case of a (dry) material element (Fig. 2.12). Based on
the equilibrium of forces on the material element, composed of the clusters of
particles in the RI and FA parts, where � observed or average force, �
force in the fully adjusted (FA) part, and � force in the relative intact (RI)
part, we have

(2.2)

Division of both sides by the total area, A (assuming thickness to be unity)
leads to

(2.3a)

Vc( )

Fa Fc

Fi

Fa Fi Fc

�

Fa

A
----- Fi

Ai
----- Ai

A
----- Fc

Ac
------ Ac

A
------�
��
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where and  are areas corresponding to RI and FA, respectively. Therefore,

(2.3b)

where � observed stress, � stress in the relative intact part, and �
stress in the FA part.

2.5 Incremental Equations
Equation (2.3b) can be generalized to three dimensions as*

(2.4)

where D is the disturbance function, D � �A, and 1 � D � �A. Here D is

FIGURE 2.11
Representations of DSC.

* Both the tensor and matrix notations are used in this text. The latter can provide for convenient
implementation in computer procedures.
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assumed to be a scalar in a weighted sense, which implies isotropic condition.
However, D can be expressed as a tensor, Dijkl; then

(2.5a)

where  Iijk� is the unit tensor. It is difficult to use Eq. (2.5a) because it is usually not
possible to conduct, or to have access to, appropriate laboratory tests for defining
the tensor Dijkl. The multiaxial or three-dimensional test with nondestructive
(ultrasonic) measurements (12) is one of the possible tests to define Dijkl; this will
be discussed later. As a simplification, the tensor of disturbance can be expressed
as

(2.5b)

where Di (i � 1, 2, 3) are disturbance components in the three principal direc-
tions, which can be expressed as 

(2.5c)

where �ij are the direction cosines and j denotes the (principal) direction.

FIGURE 2.12
Schematic of material element and force equilibrium.
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Since certain devices, such as multiaxial three- and two-dimensional devices,
can allow measurements in the principal directions, it can be relatively easier
to define D in Eq. (2.5b) compared to the definition full tensor, Dijkl. For practical
purposes, it may often be sufficient to treat D as a scalar. A majority of the treat-
ment here uses this assumption.

The incremental form for Eq. (2.4) can be derived as

(2.6a)

where d denotes increment, dD is the increment or rate of D, and �ij is the
stress tensor. Equation (2.6a) can now be expressed as

(2.6b)

where  and  are constitutive tensors for the materials in the RI and FA
parts, respectively, and  is the strain tensor.

2.5.1 Relative Intact State

As stated earlier, the RI behavior can be characterized by using an elasticity or
plasticity model with an associative response or any other suitable continuum
model—viscoplastic, thermoviscoplastic, etc.  For example, the �0-version in
the hierarchical single-surface (HISS) plasticity concept (Chapter 7) can be
used to represent the RI state. In that case, irreversible deformations and cou-
pled shear and volumetric responses will be included in the model; however,
factors such as nonassociative response (friction), anisotropy, and microcrack-
ing (softening) can deviate or disturb the �0-response to lead to the observed
behavior.

Thus, the RI response is relative in the sense that it excludes the effect of fac-
tors that deviate the observed behavior from that of the material in the given
RI state. Hence, the choice of the RI state and corresponding constitutive
model to define it depend on the material response and available test data
under given initial conditions that enable characterization and calibration of
parameters for the model for the RI material. As discussed in Chapter 1, the
final (densest) material state can be treated as the intact state. However, usu-
ally each stress–strain response can have its own local RI behavior (Fig. 2.13),
e.g., i1 for a1, i2 for a2, and so on, because the response is affected by factors
such as initial conditions, stress, strain, density, pressure, and temperature.
When the �0-model is adopted, the RI plasticity response can be expressed in
terms of these factors so that the entire range of response, expressed through
different curves (Fig. 2.13), is simulated.

In the same manner, if a nonlinear elastic response is adopted for the RI
state, the dependence of elastic parameters such as elastic modulus, E, and

d�ij
a 1 D�( )d�ij
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Poisson’s ratio, 
, or shear modulus, G, and bulk modulus, K, will define the
RI response for given initial conditions, e.g.,

(2.7a)

(2.7b)

where p0 � initial mean pressure � ( �1 
 �2 
 �3)�3. If a single curve is simu-
lated, we use the RI modulus corresponding to the given value of p0. How-
ever, for the model for simulating the response as affected by p0, the RI
modulus can be expressed as a function of p0, e.g.,

(2.7c)

where  and n are parameters.

2.5.2 Fully Adjusted State

As the loading progresses, the material parts in the RI state transform contin-
uously to the parts in the FA state. Depending on the initial state and induced
conditions caused by stress, flaws, discontinuities, and microcracking, the
material parts in the FA state can be distributed randomly over the material
element [Fig. 2.1(c)]. The transformation occurs due to the self-adjustment of
the material’s microstructure. It may be surmised that the material particles,
while undergoing motions such as translation and rotation, would experi-
ence instantaneous instability at the local (micro-) level [Fig. 2.1(c)]. However,
the measured macro response would appear as the integration of the locally
unstable responses at the microlevel and may not indicate instability in the

FIGURE 2.13
RI and observed states.
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sense of collapse. The collapse would occur in the ultimate stages when the
instabilities become predominant and critical.

In the FA state, which is asymptotic and cannot be reached or measured
in practice (in the laboratory), the material may organize toward the equili-
brated or “isotropic” state with maximum entropy. The structure and the
composition of the material in the FA state are different from that of the
material in the RI state. At the same time, both the RI and FA material parts
are coupled and interconnected, like water bubbles enclosed at random
locations in a matrix of solid material particles. It is evident that the behav-
ior of the mixture of the material element consisting of a skeleton or matrix
of solid particles and the bubbles enclosed in it is dependent on the behav-
ior of both. As the bubbles are (totally) enclosed and surrounded by the
solid matrix, they are capable of sustaining a part of the applied load. Only
when they are broken and are no longer enclosed, that is, they are con-
nected to the atmosphere through cracks in the solid matrix, do they cease
to sustain any applied load.

The material part in the FA state is analogous to the enclosed water bub-
bles in the solid matrix. It can sustain a part of the applied load. Only in the
final fully adjusted state, denoted by (FA)∞ , may the material experience
total breakdown and may the FA part not sustain any load. Such a condition
is asymptotic; before it can be reached, the laboratory testing stops, and the
material has failed. It is the “engineering” state that we can define and
use in our model. It occurs before the ultimate (FA)∞ state, when the mate-
rial “fails” for all practical purposes. It should be noted that only the engi-
neering FA state can be measured and is adopted to represent the FA state
approximately.

There are a number of ways in which we can characterize the behavior of
the material in the FA state:

• as a constrained liquid-solid. Here a possible representation is the
critical state (8, 9, 11, 12), at which the material experiences con-
tinuing shear strains under the shear stress (  or �) reached up
to that state with given (initial) pressure (J1�3 or p). 

• as a constrained liquid. Here we can assume that the material part can
carry hydrostatic stress or mean pressure (J1�3), but no shear stress
( ). That is, as soon as the material part reaches the FA state, the
shear stress in it drops to zero (11, 12). This simulation is similar to
the yielding response in the case of a perfectly plastic material when
the FA stress equals the yield stress; see Examples 6-2 and 6-3 in
Chapter 6.

• as a finite crack or void. This is similar to the assumption in the
classical damage model (6, 7). Here the material part in the FA state
can carry no stress, that is, � J1�3 � 0. Then the applied load
is carried by the material part in the RI state only, and there is no
interaction between the intact and the damaged parts, although the

FA( )

J2D

J2D

J2D
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overall observed behavior is modified because of the damaged
parts. This assumption is considered to be unrealistic.

• In some cases, the FA state can be adopted corresponding to the
material response at a reference value of a given parameter. For
instance, in the case of partially saturated materials, the FA state
can be adopted to correspond with the behavior at full saturation
or zero suction (Chapter 9).

In Chapter 4 we will present details of various characterizations for the
material parts in the RI and FA states.

2.5.3 Effective or Net Stress

In the preceding discussion, we assumed that the material is dry (or drained)
and the stresses are effective, that is, they are relevant to the skeleton of mate-
rial particles. If the material is saturated with a liquid (water) in the pores or
partially saturated with a liquid together with a gas (air) in the pores, the for-
mulation requires modifications. Alternative formulations that cover this
case are given below.

2.6 Alternative Formulations of the DSC

In the foregoing formulation, Eqs. (2.4) and (2.6), we considered an ele-
ment of the same material composed of parts in the RI state and the remain-
ing parts in the FA state. The latter is assumed to occur from the very
beginning of the loading, and its extent changes (increases) with loading.
The material element is composed of clusters of material particles in the RI
and FA states [Fig. 2.1(c)]. The force equilibrium considers the effect of the
interacting particles in the RI and FA states on the observed force (Fa). In
other words, the formulation allows for micromechanical response of the
clusters of particles in the two reference states. A major advantage of the
foregoing approach is that the responses of the material parts in the RI and
FA states can be defined based on the observed laboratory behavior of the
same material element (specimen). For instance, the RI behavior can be char-
acterized as linear or nonlinear elastic or elastoplastic by using the observed
response in the early stages of deformation, whereas the FA behavior can be
defined from the response near the ultimate stage.

The DSC can also be formulated for a material element composed of two
(or more) materials whose responses can be treated as reference responses.
Here the responses of the component materials may be characterized based
on continuum theories such as elasticity and plasticity. Indeed, it is possible
that the individual responses of the components may exhibit RI and FA states.
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Figure 2.14(a) shows a schematic of two component materials used as ref-
erence states. Their behavior can be characterized as elastic or elastoplastic,
leading to the observed behavior that can be elastic or elastoplastic. In Fig.
2.14(b), one of the materials can be characterized as elastic or elastoplastic,
whereas the other one can involve microcracking, leading to softening with
its own RI and FA responses. Figure 2.14(c) shows two materials, each show-
ing softening, and involves RI and FA responses. It is also possible that the

FIGURE 2.14
Material element composed of two or more component-reference materials.
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material is fully or partially saturated with a liquid (e.g., water). Note that for
these situations, it would be necessary to have access to the laboratory behav-
ior of each of the materials composing the element and also to the behavior
of the composite . In the following, we present examples of formulations
that allow for the use of individual materials as reference states.

2.6.1 Material Element Composed of Two Materials

Consider the schematic in Fig. 2.14(c). Each of the two reference material
states exhibits microcracking and softening behavior and involves FA states.
The observed behavior of the mixture of the two materials 1 and 2 can be
expressed as

(2.8a)

Here the term  for the composite element is expressed in terms of the
observed responses of materials 1 and 2, e.g.,*

(2.8b)

The term  denotes a ratio that is analogous to disturbance, and its defini-
tion is different from the disturbance in an element of the same material, e.g.,
D1 and D2 in Eqs. (2.8c and d) ahead, which are ratios of the volume in the FA
state to the total volume of the element, Eq. (2.4). Equation (2.4) can now be
used to represent the observed stress, , for the composite element.

The observed behavior of each of the materials can be written as

(2.8c)

and

(2.8d)

Hence,

(2.9a)

or in generalized form,

(2.9b)

* General and alternative definitions of D are presented in chapter 3.
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The generalized incremental form of Eq. (2.8a) can be written as

(2.9c)

in which the incremental forms for   and  can be substituted by using
Eqs. (2.8c and d). Thus, laboratory responses of both materials and the mixture
are needed to define Eq. (2.9). The other two situations, Fig. 2.14(a) and (b), can
be derived as special cases of Eq. (2.9). For example, for Fig. 2.14(a),

(2.9d)

and for Fig. 2.14(b),

(2.9e)

2.7 The Multicomponent DSC System

A material element can be considered to be composed of more than two ref-
erence materials. Consider that there are n component materials in a material
element as in Fig. 2.15(a). Then equilibrium of forces gives

(2.10a)

and

(2.10b)

(2.10c)

where � 
 
…
 � 1, which for unit width (b) is given by

(2.10d)

Here,  simply denotes the ratios of areas and do not have the same mean-
ing as the disturbance in the element of the same material.
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Now Eq. (2.10c) can be written as

(2.10e)

In Eq. (2.10e), the strains (i � 1, 2,…,n) can be different in all the compo-
nents, and the “disturbances,” (i � 1, 2,…,n), can be obtained for each
component as the ratios of areas, Ai�A. Useful specializations can be obtained
by making certain assumptions; if it is assumed that b � 1,   can be
expressed in terms of thickness ti (i � 1, 2,…,n) of each component. Then

(2.11a)

where    � ti �t and �  � 1.

FIGURE 2.15
Multicomponent DSC.
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Furthermore, if it is assumed that the strains in all components are the
same, i.e.,  , Eq. (2.11a) becomes

(2.11b)

For the one-dimensional case, Eq. (2.11b) gives

(2.12a)

Therefore, the equivalent composite elastic modulus, , is given by

(2.12b)

In Eqs. (2.11b) and (2.12), the thickness of each unit can be chosen such that
�ti � 1.

Equation (2.11) can lead to the rheological model, shown symbolically in
Fig. 2.15(b). Here each of the units, shown as a block in Fig. 2.15(b), can be
assigned different material characteristics such as elastic, elastoplastic, vis-
coelastic, and viscoplastic. Such a model is similar to the overlay model (16)
for simulating elastoviscoplastic behavior; its details are given in Chapter 8,
including example problems. In the multicomponent DSC, it is possible to
simulate behavior of a material element with different characterizations for
each component, as in the overlay model (Chapter 8).

2.8 DSC for Porous Saturated Media

Terzaghi (17) proposed the effective stress concept for porous saturated mate-
rials. The concept, although simple, has proved to be useful for the evaluation
of stresses and fluid pressures in saturated media and for the solution of many
practical problems. The inherent assumptions in Terzaghi’s concept are that
the effective stress, a rather fictitious quantity, is carried by the soil skeleton
through particle contacts and that the particle contact area, , is negligible
throughout the deformation and diffusion process. The latter assumption
may be valid approximately for coarse-grained materials (18); however, in
general, e.g., for cohesive materials, the contact area may not be small. Hence,
it is appropriate and necessary to allow for the effect of the finite magnitudes
of particle contacts during deformation on the solid contact and fluid stresses.

It is usually difficult to measure, inside the material, the particle contact
areas during deformation. However, it could be possible to define average
or weighted values of the changing contact areas, say, as proportional to the
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measurable void ratio, e (� volume of voids to volume of solids), and
thereby define the solid particle stresses and fluid pressures as functions of
the contact area. Such a procedure is possible through the use of the DSC and
can provide a micromechanical understanding and analysis of the problem.

2.8.1 DSC Equations

Consider an element of porous material (soil) saturated with a fluid (water);
see Fig. 2.16(a). The applied or total (compressive) force, , on a material ele-
ment is carried by the force in the solid skeleton, , transmitted through the
contact areas, , the force, , in the fluid is transmitted through the fluid
area,  [Fig. 2.16(b)]. Then the force equilibrium gives

(2.13a)

Dividing by the nominal area, A, and with rearrangement, Eq. (2.13a)
becomes

(2.13b)

or

(2.14a)

or

(2.14b)

where , , and  are the total stress, solid contact stress, and fluid stress
(at a point)[Fig. 12.16(c)], respectively, A �  
 , and D is the disturbance,
which can be defined as

(2.15)

Initially, as the contact area is negligible, D � 0 and the contact stress, , is
high, while � . As the deformation under a given stress (increment)
progresses, the particle-to-particle contacts increase and D approaches unity,
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corresponding to possible contacts under the applied (compressive) stress.
Hence, when  D � 1,  � . For 0 � D � 1, the total stress, , represents
the sum of the changing contact stress, , and the fluid stress, (1 � D) .
During deformation and flow of water out of the porous material, the contact
area, , increases, whereas the fluid area, , decreases. Hence, the stress

FIGURE 2.16
DSC for porous saturated materials.
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 carried by the contacts increases and that [(1 � D) ] carried by the
fluid decreases.

Assume that all voids are connected during the deformation progress; then
the change of fluid pressure produced by applied force, P, or stress (� � P�A)
(Fig. 2.17) at a given point can be expressed as

(2.16)

where  is unit weight of the fluid and h is the depth of the point from the
top. Substitution of Eq. (2.16) into Eq. (2.14b) leads to

(2.17)

2.8.2 Disturbance

The disturbance can be considered as the deviation of the current deforming
state with respect to the initial and final states of the material; Fig. 2.18 shows
such states in terms of volume of voids  or void ratio (e). The initial, current,
and final states can be defined by using the void ratio, e; the corresponding void
ratios are , , and . Assume that initially the void ratio is higher and that
under compressive loading it decreases due to compaction. Then the change
(decrease) in the void ratio can be considered to be proportional to the solid-
to-solid contact areas. In other words, the contact area increases during defor-
mation and at a given stage [Fig. 2.16(a)]:

(2.18)

FIGURE 2.17
Flow and deformation in idealized porous material.

D�
s( ) p f

p f
� �

f h
�

�
f

�
a D�

s 1 D�( ) � �
fh
( )
�

Vv( )

e0 ea e f

As aci
i

n

��

ch-02  Page 46  Monday, November 13, 2000  5:55 PM



© 2001 By CRC Press LLC

where aci is the contact area of particle group, i, and n is the total number of
contacts. Then the disturbance, D, can be defined based on the void ratio as
(Fig. 2.18)

(2.19a)

The disturbance, De, in Eq. (2.19a) varies from 0 to 1 for a given stress (incre-
ment). In general, the overall or total disturbance can be defined as

(2.19b)

where  and  are the maximum and minimum void ratios in which
the material can exist in the loosest and densest states, respectively;  var-
ies from 0 to 1. Then De in Eq. (2.19a), which is a part of , will vary from
the initial value, D0 ( � 0), to the final value, Df ( � 1), under the given stress
increment. The schematic variation of D is shown in Fig. 2.19. The distur-
bance, D, can also be defined based on the shear stresses, the pore water
pressure, and nondestructive properties (e.g., P- or S-wave velocities)
(Chapter 3).

2.8.3 Terzaghi’s Effective Stress Concept

Terzaghi’s effective stress concept (17) is also based on the force equilibrium
[Eq. (2.13)]. As stated earlier, it assumes that the contact area is very small;
hence, �A. Therefore, the contact stress will be very high, as  � 0.
Under the assumption that the term  must approach a finite limit, the
term ( ) in Eq. (2.14) is called the effective stress, , which represents
some measure of average stress carried by the soil skeleton. The term

FIGURE 2.18
Disturbance based on the volume of voids or void ratio, e.
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“effective stress” has no accurate physical meaning, however (19). Moreover,
the fluid pressure, called the neutral pressure, is assumed to be independent of

 because  is assumed to equal the nominal area, A. If the contact area,
, can be found (measured), the term   can be computed and the actual

contact stress can be found. However, it is difficult to measure the contact
area, , because of many difficulties in such measurements and their inter-
pretation (20, 21). Hence, it was assumed to be negligible in the Terzaghi the-
ory. However, for the calculation of the contact and fluid stress, it is
appropriate and necessary to allow for the changing contact area during
deformation. In the DSC model, the contact area, , is considered, in an
average sense, to be proportional to the void ratio, which represents the ratio
of the volume of voids to that of solids. This is achieved by defining the dis-
turbance by using Eq. (2.19).

Terzaghi’s effective stress equation is expressed as

(2.20)

where  is the effective stress and p is referred to as neutral pressure or pore
water pressure. Since the total stress, , at a point is the same, the following
relations can be assumed based on Eq. (2.14b):

(2.21a)

(2.21b)

It may be noted that  and p in Eq. (2.20) are interpreted in the same man-
ner as in the Terzaghi theory; however, their values and variations can be
different from those in the Terzaghi theory. This is because  and  in Eq.
(2.21) depend on the changing area, , the total unit weight, and the
height (coordinate) of a point [Eq. (2.15), and Eqs. (2.23) and (2.25) ahead].

FIGURE 2.19
Schematic of disturbance.
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2.8.4 Example and Analysis

Consider the problem of flow through a porous medium, as depicted in Fig.
2.17 (22). The porous saturated mass is subjected to a load or stress (incre-
ment) �. The fluid (water) is allowed to flow out uniformly at the top. The fol-
lowing geometrical and material properties are assumed:

Height, H � 1.00 m
Final height at the end of deformation, H1 � 0.80 m
Area, A � 1.0  
Applied stress, � � P�A � 10 KN/
Unit weight of water,  � 9.75 KN/
Unit weight of solids,  � 20.0 KN/

The disturbance, D, is defined based on the void ratio according to Eq.
(2.19b). Then for the saturated system:

(2.22a)

where   and   are the maximum and minimum volumes of the
fluid, and   is the current volume of the fluid during deformation. Here
the volume of solids, , is assumed to be constant. For the simple problem
in Fig. 2.17, Eq. (2.22a) specializes as

(2.22b)

where �h is the (vertical) deformation from the top at any stage.
Now, consider any point, M, initially at depth �  (Fig. 2.17). During

deformation, the point moves to M�, whose depth with respect to the current
deformed state is given by

(2.23)

It is assumed here that there is a uniform decrease in the voids, that is, the
variation of deformation is linear (Fig. 2.17).

The total stress at the generic point M is given by

(2.24)
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where  is the varying unit weight of the mixture given by

(2.25)

where  is the initial volume of solids, which remains constant, and is
assumed to equal AH1. The fluid stress at point M is given by

(2.26)

Substitution of Eqs. (2.22b), (2.23), and (2.24) into Eq. (2.17) leads to the con-
tact stress as

(2.27)

Now, the effective stress,  [Eq. (2.20)], can be expressed as

(2.28)

where the neutral pressure p � (1 � D) .
The foregoing equations will be modified for other boundary conditions

such as free drainage (22).
Figure 2.20 shows variations of the contact,  [Eq. (2.27)], at different

depths with disturbance. It varies from very high values when D � 0 to stable

FIGURE 2.20
Variations of contact stress at different depths.
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values as D → 1, except that it remains the same (� �) at the top. Figure 2.21
shows variations of the total stress, , contact stress, , fluid stress, , effec-
tive stress, ,  and neutral pressure, p, at depth  � 0.5 m. It can be seen that
the fluid stress  variation (reduction) with depth is small. Also,    and p
increase and decrease with disturbance, respectively. Variations of the total
stress, , at different depths are shown in Fig. 2.22.

Figure 2.23(a) and (b) show variations of the effective stress, , and neutral
pressure, p (Fig. 2.21). It can be seen that the effective stress increases with
disturbance, whereas the neutral pressure decreases with disturbance. For
instance, at depths  � 0.0, 0.50, and 1.0, and for D � 0.0 to 1.0, the increase

FIGURE 2.21
Variation of , and p at depth  � 0.5 m.

FIGURE 2.22
Total stresses, , at different depths.
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in the effective stress is 10.00, 13.90, and 17.80 KN/mm2, respectively.
The corresponding decrease in the neutral pressure is 10.00, 14.88, and
19.75 KN/mm2. Only at  � 0.0, are the increase in  and the decrease
in p equal. It may be noted that in contrast to the Terzaghi theory, the DSC
model allows for the changing contact area, height, and total unit weight dur-
ing deformation in the calculations of the effective stress and neutral pressure.

2.8.5 Comments

The foregoing analysis indicates that the DSC model proposed herein can
allow evaluation of contact and fluid stresses, depending on the changing
contact area, . Also, the model can provide calculation of effective stress
and neutral pressure according to the Terzaghi concept, although their

FIGURE 2.23
Variations of effective stress and neutral pressure, p, at different depths.
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variations are different because the DSC model allows for changing contact
area, height, and total unit weight. The advantage of the DSC is that the con-
tact stress and fluid pressure are influenced by the changing contacts during
deformation.

2.9 Bonded Materials

There are a number of ways in which the DSC can be formulated to charac-
terize the behavior of bonded materials such as some rocks, aged clay, and
artificially cemented or grouted soils. The mechanical behavior of such mate-
rials would involve the response (frictional and cohesive) at the particle
(grain) contacts and that of the bonding material that cements the particles.
Thus, the behavior of bonded materials would involve both cohesive and
frictional components.

The behavior of a bonded material represents the response of the matrix of
particles in contacts cemented by the bonding material, as Fig. 2.24(a) shows.
It will depend on a number of factors such as cohesion, mean effective stress,
volume change, microcracking, and fracturing. Microcracking often initiates
in the bonded material zones, leading finally to “complete” breakage of
bonds, reducing to the original skeleton of particles. The behavior at the par-
ticle skeleton with contacts, and the bonding material will involve interac-
tion, and the coupled mechanism will produce the observed response of the
mixture or matrix. A number of DSC approaches for bonded materials are
described next.

2.9.1 Approach 1

The observed response is expressed in terms of the response of the matrix in
its RI state (without microcracking and fracture) and the FA state toward
which the observed response approaches asymptotically; see Fig. 2.24(b).
Then the incremental equations will be given by Eq. (2.6).

In this approach, the observed test behavior of the matrix can provide the
responses for the RI and FA parts. The RI response can be defined as linear
elastic or elastoplastic by determining the parameters based on the early part
(before peak) of the stress–strain response [Fig. 2.24(b)]. The FA response can
be defined by using the residual stress state to approximate the FA state.
Here, the constrained liquid or constrained liquid–solid (critical state) simu-
lation can be used. The disturbance can be defined based on the stresses in
the RI, observed, and FA states (see Chapter 3).

2.9.2 Approach 2

The observed response can be expressed in terms of the RI response (as in
Approach 1) and that of the bonding material (b); see Fig. 2.24(c). Here it
would be required to test the specimens of both the bonded matrix and the
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bonding material. Then disturbance, D, can be expressed as (see Chapter 3)

(2.29)

where i denotes the response of the bonded matrix, a(m) (Fig. 2.24(c)), and the
incremental constitutive equations are given by

(2.30a)

FIGURE 2.24
Behavior of bonded materials: approaches 1 and 2.
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where  is the constitutive matrix for the bonding material, which can be
assumed to be elastic, elastoplastic, elastic with disturbance, or elastoplastic
with disturbance, depending on the observed response, a(b). It may be possi-
ble to assume that the (average) strains in both the matrix and the bonding
material are the same, i.e.,   �  � . Then Eq. (2.30a) reduces to

(2.30b)

2.9.3 Approach 3

The bonded material (matrix) can be assumed to be composed of the skeleton
of particles with contacts but without bonds (s), and the bonding material (b);
see Fig. 2.25. Then the observed (incremental) response of the matrix

can be expressed as the sum of the responses, as

(2.31a)

or

(2.31b)

FIGURE 2.25
Response of bonded material: approach 3.
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where  and  are the constitutive matrices for the skeleton (without
bonds) and the bonding material, respectively. If the strains in both are equal,
Eq. (2.31b) reduces to

(2.31c)

This approach is similar to the one proposed by Desai (1) for the behavior of
overconsolidated soil, expressed as the sum of the behavior of the soil in the
normally consolidated state, and that due to the overconsolidation (bonding)
effect. It is also similar to that used recently by Chazallon and Hickes (23). As
interaction exists between the solid and bonded phases, it will be necessary
to employ an iterative procedure while using Eq. (2.31).

2.9.4 Approach 4

The behavior of the bonding material can be treated as a reference state, while
that of the skeleton of soil (without cementation) is treated as the other refer-
ence state. The response of the bonding material may be stiffer or softer com-
pared to that of the observed behavior of the matrix (with cementation). The
disturbance, , can be expressed as

(2.32)

where b, m, and s denote bonding material, matrix, and skeleton, respectively.
If the response of the bonding material is stiffer, D will vary from 0 to 1; see
Fig. 2.26. If it is softer, it will have a value greater than 1; in that case, it may

FIGURE 2.26
Response of bonded material: approach 4.
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be nondimensionalized with respect to the final value, Df, corresponding to
the residual stress so that it varies from 0 to 1. However, in that case, the value
Df needs to be provided in the analysis and computation.

Figure 2.26 indicates that the behavior of the matrix is affected by progres-
sive microcracking in the bonds. In the limit, the behavior of the bonded
matrix may tend toward that of the skeleton of a (dry) granular system with-
out bonds but with particle contacts. Thus, the behavior of the skeleton can
be obtained from tests with the granular material (say, sand) in its state with-
out the artificial or natural bonding.

2.9.5 Porous Saturated Bonded Materials

The equilibrium of forces for a material composed of solid particle contacts,
bonding material, and fluid, with areas As, Ab , and Af, respectively (Fig. 2.27),
gives

(2.33a)

(2.33b)

where Ds, Db, and Df are ratios of the areas of the solid contacts, bonding
material, and fluid to the total nominal area A. It will be difficult to determine
the three areas in a deforming material.

If we assume that the contact area, As, is negligible and define effective
stress over the nominal area, A, as in the Terzaghi theory [Eq. (2.20)], Eq.
(2.33) reduces to

(2.34)

FIGURE 2.27
Saturated bonded material.
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where   is the effective stress and p is the pore water pressure in the sense
of the classical effective stress principle. However, as noted before, the chang-
ing contact area is not included in such an approximation. Specialization
such as in Eq. (2.34) has been used for defining the behavior of cemented
sands (24).

2.9.6 Structured Materials

A structured material is defined as a material that possesses a modified micro-
structure in relation to that of its basic reference state. Thus, many material
systems such as reinforced systems (earth, concrete, and metal or ceramic
composites), overconsolidated soil, dislocated silicon with impurities,
asphalt concrete with enhanced bonding due to chemical effects, and natural
soils with respect to their reconstituted or remolded states (25) can be treated
as structured materials. The formulation and application of the DSC for struc-
tured materials are given in Chapter 10.

2.10 Characteristics of the DSC

It is evident from Eq. (2.6) that the DSC constitutive equations involve

(1) the influence of the deformation characteristics of the interacting
material parts in the reference states, and

(2) the possibility of relative motions (translation, rotation) between
the material parts in the reference states, which can involve differ-
ent stresses (and strains) in them.

These two properties are important as they allow for the interaction
between the two parts, leading to a diffusion-type process within the mixture
in the material element. As a result, Eq. (2.6) can provide a general formula-
tion, compared to that in the classical damage model (6, 7) in which the
cracked parts are assumed to carry no stress. Various specializations of the
DSC, including the classical damage model, are discussed in Chapter 4.

2.10.1 Comparisons and Comments

One of the distinguishing features of the DSC is that it allows for the interact-
ing mechanisms between the parts in the reference states as affected by the
microstructural rearrangement and self-adjustment of particles. However, its
formulation does not require particle or microlevel characterization. This is
because the responses of the parts in the reference states are defined on the
basis of the macrolevel response measured on finite-sized (laboratory) speci-
mens. As a result, it avoids the necessity of defining particle-level constitutive
equations, which are required in the micromechanical and microcrack inter-

�
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action (with damage) models (26). This is considered to be a distinct advan-
tage, as it is difficult (at this time) to measure constitutive responses at the
particle level; therefore, in the micromechanical and microcrack interaction
models, it is usually defined on the basis of measured behavior on finite-sized
specimens, which is indeed an inconsistency.

Furthermore, a material made up of many (millions of) particles represents a
complex and nonlinear system. Hence, it is not possible theoretically to integrate
(micro-) particle-level responses to obtain the macrolevel response because a part
of the particle interactions may be lost in the process. Indeed, approximations are
always possible, as the micromechanical models imply. In the DSC, we depend
on the interaction between clusters of material parts in the reference states, which
is considered to be more consistent for describing the behavior of the complex
system. In Chapters 3 to 12 we discuss how the responses of the material parts in
the reference states are determined from laboratory tests.

It is often appropriate to define the RI behavior on the basis of plasticity theory
involving a yield surface. However, it is not necessary to invoke yield-surface-
based model(s) in the DSC. It can be formulated on the basis of irreversible
strains without the yield surface.

2.10.2 Self-Organized Criticality

The self-organized criticality (SOC) concept by Bak and co-workers (27)
around the mid-1980s analyzes the unique collapse or catastrophic states a
material may reach under thermomechanical loading. This concept is similar
to the critical state (CS) concept of soil mechanics developed by Roscoe and co-
workers in the 1960s (8, 9) in which a soil with given initial confining pressure
approaches the critical state when its density or void ratio approaches unique
value irrespective of its initial density. At the critical state, the material deforms
in shear without a change in its volume. The synergetics concept by Haken in
1978 (28) proposed a theory for analyzing the unique final state, called the “state
of thermal equilibrium” into which a system develops. Here, the original struc-
ture of the system disappears, replaced by homogeneous systems.

The DSC allows the characterization of the catastrophic or collapse state as
in the foregoing concepts, and also the characterization of the entire behavior
of the material including the prepeak and postpeak responses. Hence, the
DSC is considered to be general compared to the SOC, CS, and synergetics
concepts. Detailed descriptions of the SOC in comparison with the DSC, as
well as the generality of the DSC, are presented in Appendix I.

2.11 Hierarchical Framework of the DSC

Figure 2.28 depicts the unified and hierarchical framework of the DSC. It per-
mits, as shown in the subsequent chapters, adoption of constitutive models
depending on the specific material properties for a given application’s need.
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3
Relative Intact and Fully Adjusted States, and 
Disturbance
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In Chapter 2, we derived the following incremental DSC equations (1.8) for an
element of the same material composed of material parts in RI and FA states:

(3.1a)

or, in matrix notation,

(3.1b)

Similar incremental equations can be derived for the alternative formulations
for an element composed of more than one material, e.g., Eqs. (2.9c), (2.11),
(2.14), and (2.30a) of Chapter 2.
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In this chapter, we present explanations for the RI (i) and FA (c) states and the
disturbance function, D, with respect to a given material. We also present proce-
dures for the determination of parameters for the FA state and the disturbance
function, D; for the RI models, they are presented in Chapters 5 to 12.

At this time, we consider disturbance that results in damage or degradation;
stiffening or healing where the disturbance may decrease is discussed in Chapter
10. In that case, a deforming material element experiences microstructural
changes that result in increased disturbance from the initial disturbance, which
can be zero or nonzero. The initial disturbance depends on the initial conditions
such as anisotropy, flaws, dislocations, and manufacturing defects. During the
microstructural modifications and the self-adjustment of material particles, the
material parts in the relative intact (RI) state transform to fully adjusted (FA)
parts. Figure 3.1(a) shows a schematic of the growth of disturbance with loading
and deformation. The shaded zones show the FA parts, while the unshaded

FIGURE 3.1
Representations of DSC.
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parts show clusters of the RI parts. The asymptotic value of disturbance is unity
when the FA state is reached over the entire material element. Before the FA state
can be reached, the material’s microstructure can experience local and global
instabilities, denoted by Dc, Df, Du, etc. [Fig. 3.1(b)–(d)], which are also discussed
later (e.g., Chapter 12). For instance, in the case of a dense granular material, a
local instability occurs when the material transits from compactive to dilative
volume (Dcd), which may not necessarily cause ‘‘failure.” However, when the
critical value of disturbance (Dc) is reached [Fig. 3.1(b)–(d)], failure in the sense of
engineering reliability can initiate, while at D � Df the material may be consid-
ered to have ‘‘failed.’’ For given initial conditions (pressure, density) the behavior
may approach a residual (or critical) state (Du), which may be adopted approxi-
mately as the FA state for the evaluation of the disturbance. As shown in Fig.
3.1(c), the final FA state (D � 1) is not measurable because the material had
“failed” before that state can be realized. However, D � 1 can also be used in the
formulation of the model, for instance, in the mathematical definition of D ahead.

3.1 The Relative Intact and Fully Adjusted States

Figure 3.2 shows schematics of stress–strain responses of materials whose
physical state, defined by density (�) or void ratio (e), does not change signif-
icantly during deformation. In other words, as in the case of some metals, it

FIGURE 3.1
(Continued.)
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is assumed that the density or void ratio of the material remains invariant
during deformation. The linear elastic response can be considered to be the
RI state in relation to the observed elastic–plastic (hardening) behavior. The
elastic–plastic hardening response can be treated as an RI state in relation to
the elastic perfectly plastic response. The linear elastic or the elastic–plastic
hardening responses can be treated as RI in relation to the observed degrada-
tion or softening behavior.

In the case of granular and frictional materials like soils (clays, sands),
rocks, and concrete, the observed response depends on various factors such
as initial mean pressure (p0 � �0 � J10/3), where J1 � �1� �2 � �3, density or
void ratio (volume of void to volume of solids), and stress or loading path (3,
4, 6, 7). Here the physical state defined by density or void ratio changes dur-
ing deformation. Figure 3.3(a) shows schematics of the stress–strain behavior
of initially loose and dense granular materials. The loose material with initial
void ratio , and given initial pressure (p0), compacts continuously, its void
ratio decreases, and it approaches a critical value, ec, (Fig. 3.2(b) and (c)),
when the stresses reach critical values  and , where J2D is the second
invariant of the deviatoric stress tensor, Sij, and is proportional to the shear
stress difference (�1 � �3) and to octahedral shear stress, �oct.

The initially dense material with void ratio  and a given pressure (p0)
may first compact and then experience the transition at point b (Fig. 3.3(b)),
corresponding to Dcd [Fig. 3.1(c)], when its volume increases or it experiences
dilation. That is, the void ratio first decreases, then increases after point b, and
upon further deformation, after passing through the peak (point d), it
approaches the critical state (ec, , ); see Fig. 3.3(d). The material’s
response at the critical state can be used to define the behavior of the material
in the FA state.

FIGURE 3.2
Stress–strain behavior: no change in physical state.
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Relative Intact Behavior. A loose material with an initial mean pressure
(p0) may compact continuously during shear loading. In that case, the RI
response can be characterized by excluding the effect of increased compac-
tion, in which case the observed response can be stiffer than the RI response
[Fig. 3.3(a)].

In the case of a dense material, the initial compaction would warrant
consideration similar to that for the loose material. However, for practical
purposes, and because for the response up to the transition point [b; Fig. 3.3(a)]

FIGURE 3.3 
Behavior of loose and dense granular materials.



© 2001 By CRC Press LLC

the disturbance is usually negligible, the RI and the observed responses may
be assumed to be approximately the same (up to point b). Then internal
‘‘microcracking” and relative particle motions would result in dilation, and
the disturbance (damage) after point b would increase continuously. The RI
response thereafter can be characterized as nonlinear elastic or elastic–plastic
hardening (e.g., �0-model, Chapter 7) [Fig. 3.3(a)]. Details of constitutive
equations and matrix, , Eq. (3.1), that characterizes the RI response are
given in Chapters 4 to 11.

Fully Adjusted Behavior. The material parts that have reached the FA state
during deformation can be considered to be at the critical state, e.g., .
When the material element follows the same stress path (as in a laboratory test),
this (stress) state will be defined uniquely. 

Further explanation of the behavior of a material element in the DSC is
depicted in Fig. 3.4(a) in the four-dimensional space, J1� , e,
where I2D is the second invariant of the deviatoric strain tensor, Eij (8). Here,
as a simplification, the response in which the physical state (e) does not
change during deformation is considered; examples of such a behavior are a
metal and saturated soil under undrained conditions. The shear loading
starts at point A and travels along path A–C, and the observed or average
response is denoted by point C. The corresponding RI and FA (critical) states
are denoted by points B and D, respectively. Similar depictions can be devel-
oped for other loading conditions and stress paths.

In a boundary-value problem, on the other hand, if the stress paths for each
material element (or point) can be computed, after a given incremental loading,
its stress and void ratio at the critical state can be evaluated. This is shown
schematically in Fig. 3.5 for three typical points (1–3) in a half-space loaded
incrementally. The loadings of these points start at three different initial
pressures ( J10). Points 1 and 2 may approach their critical states at  and ,
respectively, while point 3 may not reach the critical state at all. However,
once a material point has reached the FA (critical) state during deformation,
its critical state is defined with respect to the stress path followed by the
overall material element (consisting of RI and FA parts); see Fig. 3.1(a).

3.1.1 Characterization of Material at Critical State

When the material is at the critical state, there is no further change in its
volume or void ratio, and it deforms in shear under constant value of the
shear stress  reached up to that state (9). Based on laboratory obser-
vations, it is possible to define the behavior of the material at the critical state
in terms of , and , as depicted in Fig. 3.3(d) and (e). Then the consti-
tutive response of the material at the critical state can be expressed as

(3.2a)
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and

(3.2b)

where  is the slope of the critical state line (CSL) [Fig. 3.3(d)], 	 is the slope
of the critical state line [Fig. 3.3(e)], and  is the value of  corresponding to

� 3pa, where pa is the atmospheric pressure constant.
Then the behavior of the material, Eq. (3.2), at the critical state can be used

to define the response of the material parts in the FA state. The physical interpre-
tation is that the growing clusters of the FA parts (at the critical state), Fig. 3.1(a),
as they are surrounded by the RI parts, possess certain strength like a con-
strained liquid–solid (CLS). That is, they can continue to carry the same
shear stress  without change in volume. Thus, the deforming FA parts

FIGURE 3.4 
DSC in four-dimensional space and component spaces. (From Ref. 8, with permission.)
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provide interaction with the RI parts and produce the coupled observed
response.

3.1.2 Specializations

Now, if it is assumed that the FA part (at the critical state) can carry no shear
stress but can continue to carry hydrostatic stress or mean pressure, it
behaves like a constrained liquid (CL). In this case,  in Eq. (3.2a) is zero.
Then the constitutive equation for the FA part will depend only on the volu-
metric response, Eq. (3.2b).

If the FA material is treated like a “void” or crack, as it is assumed in the clas-
sical damage approach (10), it cannot carry any shear or hydrostatic stress. Then

 � 0 and 	 � 0 in Eq. (3.2a,b) and the stress point is at the origin (Fig. 3.6); this
idealization does not allow for coupling between the RI and FA parts. Figure
3.6 depicts the above specializations in the �J1 and e � J1 spaces, in which

FIGURE 3.5
FA (critical state) in boundary-value problems.
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CLS corresponds to the constrained liquid–solid, CL to constrained liquid, and
void to no strength, idealizations. Further details on the equations for the FA
state and matrix , Eq. (3.1), that define the FA response are given in Chapters
4 to 11.

The behavior of materials such as metals and alloys is not significantly influ-
enced by the hydrostatic stress, and there is no significant change in their den-
sity or void ratio during deformation. In other words, their response can be
characterized based mainly on the stress–strain response. For these materials,
the FA response can be characterized as a constrained liquid, which can carry
mean pressure but no shear stress. The perfectly plastic response of an elasto-
plastic material can be considered analogous to such a characterization. Alter-
natively, the material in the FA state for metallic materials can be assumed to
carry no stress at all. Some examples are given in Chapter 6.

The idea of the critical state can be considered a generalization of classical
elastoplastic theory (Chapter 6). Just as in the critical state concept, the mate-
rial, like a metal whose stress–strain behavior is essentially independent of
the mean pressure (Fig. 3.2), reaches a state of constant volume at the yield.
Then the material deforms under constant yield stress.

FIGURE 3.6 
Representation of FA behavior.
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3.2 Disturbance and Function

The observed response, , is expressed in terms of the responses, and ,
of the materials in the reference states, RI and FA, respectively:

(3.3)

Figure 3.1(b) shows a symbolic representation of the , , and  states
connected through the disturbance, D, which acts as an interpolation mecha-
nism between the interacting materials in the RI and FA states. An approxi-
mate analogy can be given here: the above representation is similar to
expressing the behavior of a given volume of the mixture of ice and water in
terms of the behavior of ice and water. The behavior of ice is analogous to that
of the RI material, and the behavior of water is analogous to that of the FA
material.

In a deforming material, disturbance, D, can be expressed as the mass
of material in the FA state to the total mass (M):

(3.4)

With no initial disturbance, D varies from 0 to 1, as initially , and
at higher deformations . If we assume that the densities of the
materials in various states are the same, D can be expressed approximately
as

(3.5a)

(3.5b)

(3.5c)

where , , and  are the volume, area, and length of three-dimensional,
two-dimensional, and one-dimensional material elements in the FA state,
respectively.
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In general, however, D can be expressed as

(3.6)

where the functions D1 and D2 depend on the varying density and volume,
respectively.

It may be noted that the form of D in Eq. (3.5) is similar to the damage (�)
in the classical damage approach (10). However, in the DSC, the interpreta-
tion of disturbance is different and general; it considers that the FA material
has specific strength and that it interacts with the RI material. On the other
hand, in the classical damage approach, the FA material is treated as a “void”
without interaction with the RI part. Furthermore, in the DSC, D can denote
both damage or degradation, and growth or stiffening (strengthening).

3.2.1 Disturbance Function

Once the RI and FA states and disturbance are defined, the next step is to for-
mulate the disturbance function, D. The development of microcracking and
damage, as well as compaction and strengthening, can depend on the direction,
and hence, it would lead to anisotropic disturbance. As a result, in general, D
would be a tensor with directional components (Chapter 2). It is usually difficult
to measure the directional properties of deforming materials; some possible
ways are discussed in Chapter 2. However, for practical purposes, it may often
be sufficient to treat D as a scalar, in an average and weighted sense. Most of the
descriptions in this text treat D as a scalar.

There are a number of ways in which we can define D to represent degra-
dation or strengthening. The most direct way is to measure the mass, volume,
etc. [Eqs. (3.4) and (3.5)] of the material in the FA state. However, this can be
difficult at this time, mainly because of the lack of proper testing devices to
penetrate the material and measure these quantities; additional discussion on
this aspect is presented in Chapter 2. Hence, the indirect approaches need to
be developed based on phenomenological considerations. One such indirect
way is to define D from the measurements of stress–strain (� ��), volumetric
(void ratio), effective stress , or pore water pressure (p) and
or nonde-
structive responses; see Fig. 3.7(a) to (d). The other phenomenological way is
to express D in terms of (internal) variables such as plastic strain trajectory,
and plastic work or dissipated energy. The definition of D usually relies on
the combination of these two phenomenological approaches.

3.2.2 Laboratory Tests

The disturbance that expresses the deviation of the observed behavior with
respect to its behavior in the two reference states, RI and FA, can be defined on
the basis of the stress–strain, volumetric (void ratio), and nondestructive
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(velocity or attenuation) behavior. Figure 3.7(a) and (b) show typical
stress–strain and void ratio (volumetric) responses. The disturbance, D, can be
expressed as

(3.7a)

FIGURE 3.7
Disturbance from test data.
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and

(3.7b)

where � denotes appropriate stress measures such as axial stress �1, shear
stress �, stress difference (�1��3); �

, where �i (i �1, 2, 3) are the principal stresses, or octahedral shear
stress, . It may be noted that values of D� and De at a given
stage during deformation may not be the same. However, in the iterative
solution procedures, both the stress equilibrium and volumetric responses
can be satisfied simultaneously (Chapter 13).

Often, the disturbance can be defined in terms of  and the measure of
hydrostatic or mean stress, J1, as

(3.8a)

(3.8b)

Then they can be used in the constitutive Eqs. (3.1), which are decomposed
in deviatoric and hydrostatic components. The use of such a decomposition
for the behavior of interfaces is given in Chapter 11.

In the case of the nondestructive behavior, say, ultrasonic or Lamb wave
velocity (V), the disturbance can be expressed as [Fig 3.7(c)]

(3.9)

where Dv is disturbance based on velocity, is the velocity in the RI state,
which can be adopted as the velocity in the initial state of the material, is
the observed velocity, and  is the velocity in the FA state, which can be
adopted as the asymptotic value to the observed response (5, 11).

In the case of undrained behavior, when the liquid from a saturated porous
material does not have sufficient time to drain (under static or cyclic loading),
the disturbance can be obtained in various ways; for strain-controlled tests,
see Fig. 3.8, or for stress-controlled tests, see Fig. 3.9 (12).

In the case of the strain-controlled test, the disturbance, D�, can be found
by using Eq. (3.7), in which peak stresses for different cycles are used as the
observed response. Here the continuation of the response under the first
cycle, not affected by cyclic degradation, can be treated as the RI response
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(e.g., using HISS �0 -plasticity model; Chapter 7). The residual or ultimate
stress ( ) can be adopted as the stress in the FA state; see Fig. 3.8(a).

For the stress-controlled loading, Fig. 3.9(a), the extension of first-cycle
behavior can be treated as the RI response simulated by using a suitable model,
e.g., the HISS �0-model. Based on the pore water pressure measurements, the
observed mean effective stress can be found as

 (3.10)

where  and �i (i �1, 2, 3) are the effective and total stresses, respectively,
and p is the pore water pressure.

FIGURE 3.8 
Cyclic strain-controlled test.
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The integration of the incremental plasticity equations for the �0-model
(Chapter 7)

(3.11)

leads to the computation of the RI stresses and the value of  for the RI
response. A schematic of  and  vs. the number of cycles (N) or corre-
sponding deviatoric plastic strain trajectory, �D, from Fig. 3.9(a), is shown in
Fig. 3.7(d). Then the disturbance based on the effective stress can be evaluated

FIGURE 3.9
Cyclic stress-controlled test.
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as (12,13)

(3.12a)

where  denotes the measured ultimate (asymptotic) value. Alternatively,
the measured excess pore water pressure can be used as [see Fig. 3.9(b)]

(3.12b)

where is the initial effective confining stress . Further details including
instability and liquefaction analysis are given in Chapter 9.

3.2.3 Stiffening or Healing

Some materials, e.g., saturated sands during deformation in the post-lique-
faction zone, dislocated silicon crystals with impurities (oxygen, nitrogen,
etc.), and asphalt in pavements, may experience a strengthening response
during loading and unloading. Some reasons for such “healing” are continu-
ing compaction, chemical rebonding, and locking of dislocations. A sche-
matic of the stress–strain response showing softening and stiffening is shown
in Fig. 3.10. Here, disturbance can be expressed using Eq. (3.7). However, it

FIGURE 3.10 
Softening and stiffening behavior.
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may first increase due to microcracking and softening, and then after the
threshold plastic deformation (�t), it may decrease. Details are given subse-
quently here and in Chapter 10.

Disturbance from Elastic Moduli. Often, disturbance, D, can be found
approximately on the basis of the degrading (secant) elastic (E) or shear (G)
moduli. For instance, consider the shear stress (� or �12) vs. shear strain (� or �12)
response in which the changing (degrading) shear modulus, G, is measured
with deformation; see Fig. 3.11. The special form of Eq. (3.1), by ignoring the last
term, is given by (5)

(3.13a)

where and denote the initial and FA shear moduli, respectively. If it is
assumed that  and that the FA state does not carry any
shear stress; that is, , Eq. (3.13a) reduces to

(3.13b)

which leads to the expression for the degrading shear modulus, , as

(3.13c)

Similarly, for the case of Young’s elastic modulus, E,

(3.13d)

FIGURE 3.11
Disturbance from shear modulus.
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Then the disturbance can be found as

(3.13e)

or

(3.13f)

Such values of D are considered to be approximate, because they may not
include multidimensional effects like in the definitions when they are
expressed in terms of total plastic strain trajectory or dissipated work (see
below).

3.2.4 Representation of Disturbance

The disturbance function, D, can be expressed in terms of certain internal
variables and factors that affect the constitutive behavior. For example, D can
be expressed as

(3.14a)

where � denotes an internal variable such as the plastic strain trajectory, w is
the (dissipated) energy, S is entropy (disorder), � is free energy, t is time or
the number of loading cycles (N), T is temperature, and �i (i � 1, 2, …)
denotes factors like environmental (chemical) effects and impurities. As a
simplification, D can be written as

(3.14b)

or

(3.14c)

where � or w is affected by time, temperature, and �i. Often, the internal
microstructural changes are assumed to be influenced mainly by the shear or
deviatoric plastic strain trajectory, �D; hence, 

(3.15)

In the functional form, D is often defined by using Weibull (14) functions as

(3.16a)

D
Gi Ga

�

Gi
-------------------�

D
Ei Ea

�

Ei
------------------�

D D �, w, S, �, t N( ), T , �i[ ]�

D D � t,T ,�i( )[ ]�

D D w t,T ,�i( )[ ]�

D D �D, t,T ,�i( )[ ]�

D Du 1 1
�D

h
----- 

  W

�
 
 
 

s�

��



© 2001 By CRC Press LLC

where h, , s, and Du are material parameters. This form can provide a gen-
eral variation of D, to cover materials that may undergo disturbance from the
beginning of loading, and also those that involve insignificant disturbance in
the beginning; see Fig. 3.12 (5). At the same time, D in Eq. (3.16a) can often be
sensitive to small changes in the parameters.

A simpler form of D commonly used is given by

(3.16b)

where A, Z, and Du are material parameters. With only two parameters, h and
s (i.e., w � 0), Eq. (3.16a) can yield results similar to those from Eq. (3.16b).
Note that, as discussed in Chapter 2, the expressions for D, Eqs. (3.16a and b)
for the disturbance (damage) are also relevant to describe decay and growth
processes in many natural systems.

The parameters, say A, Z, and Du in Eq. (3.16), can be expressed in terms of
such factors as initial confining pressure (�0), initial density (� 0), size ratio
(L
d), where L is the length or height of the test specimen (material element)
and d is the mean diameter; temperature (T), and initial dislocation density
(N0) (15–18).

Regarding the size ratio, consider the uniaxial test results in Fig. 3.13 for an
artificial rock (15); the initial value of �0( � 0), density �0, and T (room tem-
perature) are assumed to be invariant. It can be seen that the stress–strain
response is dependent on L
d. Hence, A, Z, and Du are dependent on L
d.
Thus, the inclusion of L
d in the description of D can allow incorporation of
the size effect in the DSC formulation (15, 17).

FIGURE 3.12
Schematic of disturbance function (5). (With permission from Elsevier Science.)
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3.2.5 The Stiffening Effect

The disturbance function, D, Eq. (3.16), can be modified to include the stiff-
ening effect, as (Fig. 3.10) (18,19)

(3.17)

where , Ab, and Zb are parameters for the softening behavior to the lower
yield or residual stress, and , Ah, and Zh are parameters related to the stiff-
ening response; here, is given by

(3.18)

where  is the ultimate disturbance corresponding to the limiting stiffening
response, and  is the threshold value of the deviatoric plastic strain
trajectory when stiffening initiates; see Fig. 3.10. Further details are given in
Chapter 10.

3.2.6 Creep Behavior

In the case of the viscoplasticity (Chapter 8), the disturbance can be obtained
on the basis of the elastoplastic response. In the viscoplastic model, the time-
dependent (incremental) viscoplastic response converges to the corresponding

FIGURE 3.13
Stress–strain behavior of soft rock for different L
d ratios, d� 3.0 inch:(a) vs. �D; (b)
D vs. �D (15). (©1990, John Wiley & Sons Ltd. Reproduced with permission.)
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plastic strains according to inviscid plasticity (e.g., classical or HISS-�0 models;
Chapters 6 and 7). Thus, the elastoplastic response can provide the RI
response with respect to the observed elastoplastic (softening) behavior; see
Fig. 3.14. Then the disturbance, D, can be expressed as

(3.19a)

where ξvp is the strajectory of viscoplastic strains, or

(3.19b)

where w is the dissipated energy

(3.20)

and D, A, and � are corresponding parameters. Here,  is the vector of vis-
coplastic strains. For materials that experience both viscoelastic and visco-
plastic deformations, the energy can be expressed as

(3.21)
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where  is the vector of viscoelastic strains. The viscoelastic and viscoplas-
tic strains in Eq. (3.21) and the parameters in Eq. (3.19) can be dependent on
temperature and other (environmental) factors. Details of creep or elastovis-
coplastic models are given in Chapter 8.

3.2.7 Rate Dependence

In the case of rate-dependent behavior, the disturbance can be defined based
on stress–strain responses under different strain  or deformation  rates.
Figure 3.15 shows a schematic of the stress–strain responses at different strain
rates at a given temperature. Then the response under the highest strain
rate  can be assumed to represent one reference (RI) behavior, and that
under the lowest strain  or static condition can be considered as the
other reference (FA) state. Then the disturbance can be expressed as

(3.22)

where , , and  are the stresses corresponding to the highest strain rate,
the observed, and the lowest strain rate, respectively. In terms of the irrevers-
ible (plastic) strains or dissipated energy, D can be expressed as

(3.23a)

FIGURE 3.15
Responses under different strain rates .�̇( )
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or

(3.23b)

where �D and w are the temperature-dependent deviatoric plastic or viscoplas-
tic strain trajectory and dissipated energy, respectively, for a given strain rate.
Then the parameters Du, A, and Z can be expressed as functions of the strain
rate and temperature. Examples of temperature- and strain-rate-dependent
behavior are given in later chapters (e.g., Chapter 8).

3.2.8 Disturbance Based on Disorder (Entropy) and Free Energy

A deforming material can be considered to be composed of ordered and dis-
ordered material parts. In this context, disturbance (D), which connects the
two states, can be related to free energy and disorder. Energy can be
expressed in terms of Peirel’s and Helmholtz free energy, and disorder can
be measured in terms of entropy (20–22). Boltzmann (20) proposed the connec-
tion between disorder and entropy as

(3.24)

where  is the entropy, k is Boltzmann’s constant, and W is the disorder
parameter, which represents the probability that the system would exist in
the state relative to all possible states in which it can exist.

Desai et al. (18) and Dishongh and Desai (19) developed a connection
between disturbance and rate of dislocation density, , expressed as (23, 24)

(3.25a)

where k is Boltzmann’s constant,  is the back stress, Q is Peirel’s energy,
, p, and r are material constants, k0 � B0/�0, B0 is mobility, T
 is the absolute

temperature, �0 is the (resolved) shear stress, and  is the observed shear
stress. The expression of D, in Eq. (3.8), by assuming  � 0, gives

(3.26)

hence, the relation between  and D is given by (18, 19)

(3.25b)
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Basaran and Yan (25) proposed an expression for disturbance in terms of
disorder and Helmholtz free energy (�) per unit mass given by

(3.27)

where e is the internal energy, T is the absolute temperature, and S is the
entropy. The change in disorder, �W, at any time is expressed as

(3.28)

where N0 is Avogardo’s number at reference disorder, W0,  is the specific
mass (g
mole) (26), and e0 and �0 are the internal and Helmholz free energies
at the reference state. Then disturbance, D, is expressed as

(3.29a)

If it is assumed that the temperature change ∆T is small, Eq. (3.29a) can be
simplified as

(3.29b)

Equation (3.29) is similar to Eq. (3.19), which is expressed in terms of
accumulated (deviatoric) plastic strains or dissipated energy. Equation
(3.29) can provide an alternative way to express D, while the two in Eq.
(3.19) can be relatively simple, particularly from the viewpoint of the definition
and determination of parameters from standard laboratory tests on materials.

3.3 Material Parameters

It is necessary to determine material parameters in the RI , FA , Eq. (3.1),
characterizations, and the disturbance function. Appropriate laboratory and
or
field tests on the material under various significant factors such as initial condi-
tions, stress paths, volume change response, loading (static, quasistatic, cyclic,
repetitive), rate of loading, temperature, and chemicals are required for the deter-
mination of the parameters. Detailed descriptions of the test equipment are
beyond the scope of this book; however, we shall mention the test devices
employed to obtain the observed behavior used for the determination of
parameters and validation of the models. Details of the determination of
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parameters and validations for various models to characterize the RI
response are given in Chapters 5 to 12. Here, we provide the procedure for
determination of parameters for the FA state and the disturbance function.

3.3.1 Fully Adjusted State

FA as void. If the FA state is treated as a “void” and carries no hydrostatic
(mean) and shear stress, the matrix,  Eq. (3.1), is null. Then it is not necessary
to have any parameters for the FA state.

FA as constrained liquid. If the FA state can carry hydrostatic stress and
no shear stress and compatibility of strains is assumed, Eq. (3.1) reduces to
[see Eq. (4.28)], with the associated assumptions 

(3.30)

For this specialization, the DSC characterization involves only the RI
response, that is, the model used for the RI response can be modified to simu-
late the FA response. Equation (4.19) in Chapter 4 presents such a specialization
of the RI constitutive matrix for the characterization of the FA behavior.

FA as critical state. If the FA behavior is characterized by using the criti-
cal state concept, the parameters are those in Eq. (3.2). Their determination is
discussed below.

At least three shear tests, triaxial with cylindrical specimens or multiaxial
with cubical specimens, with different initial confining pressures (�0��0�
J10
3) are recommended to obtain the plots, such as in Fig. 3.3(a), (b), (d), and
(e). Usually, conventional triaxial tests (�1 � �2 � �3) are performed under the
stress path (CTC); see Fig. 3.16. Sometimes tests with other stress paths (see Fig.
3.16) are available and can be used. The state of stress (�1 ��3) in the zones
where the behavior approaches the critical state provides the approximate val-
ues of stress at the critical state. Note that the laboratory measurements can
provide approximate values because before the final value is reached, the
material “fails.”

The knowledge of σ1, σ2 � σ3 at the critical state can now be used to evalu-
ate  from

(3.31a)

and  from

(3.31b)

Then the slope of the average line on the plot  and  [shown in Fig.
3.3(d)] yields the value of .

The values of the void ratio  (see Fig. 3.3(b)) at the critical stress state
(above) are available from the tests under different initial mean pressures.
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The plot of vs.  [Fig. 3.3(e)] provides the value of 	 as the slope
of average line. Here pa is the atmospheric pressure constant. The value of ,
from Eq. (3.2b), is obtained from the same plot corresponding to . 

3.3.2 Disturbance Function

Let us first consider the disturbance function, D, from Eq. (3.16b), which is
expressed as follows by taking the logarithm twice:

(3.32)

FIGURE 3.16
Representation of stress paths: (a) principal stress space; (b) projections of stress paths on
triaxial plane; (c) stress paths in octahedral plane.
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The value of �D, say, at any point P (see Fig. 3.17(a)) is obtained from

(3.33a)

where  is the vector of the increments of plastic deviatoric strains: 

(3.33b)

(3.33c)

The disturbance, Dσ, at point P is evaluated by using Eq. (3.7), and Du

corresponds to the residual (or critical) stress state, seen in Fig. 3.17. Now,
a plot of  ln[�ln((Du � D)
Du)] vs. ln�D [Fig. 3.17(b)] provides the value of

FIGURE 3.17
Determination of disturbance parameters.
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Z as the slope of the average line, and the intercept along the ordinate
when ln(�D)�0 gives the value of A.

The parameters (h, , s) in the general form, as in Eq. (3.16a), can be eval-
uated by using an iterative procedure in which initial estimates are refined
progressively; for example, the Marquard–Levenberg (ML) method, given in
Press et al. (27, 28) can be used:

Let us first assume that s �1; then Eq. (3.16a) can be written as

(3.34)

The values of D and �D are evaluated at different points on a given
stress–strain curve, and Du is computed from the residual stress value
[Fig. 3.17(a)]. Often, Du� 1 can be adopted. A plot of  vs.
ln(�D) leads to the first estimates of  and  from the slope and the
intercept; see Fig. 3.18(a). Now the value of  corresponding to the first

FIGURE 3.18
Parameters for disturbance; Eq (3.15b). (Adapted from Refs. 5 and 28.)
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estimates,  and , can be found by writing Eq. (3.16a) as

(3.35)

A plot  vs.  gives the first estimate of  as
the slope of the average line (Fig. 3.18(b)). The above procedure is repeated
(in the ML scheme) to obtain progressively refined values of h, w, and s.

References

1. Desai, C.S., “Further on Unified Hierarchical Models Based on Alternative
Correction or Disturbance Approach,” Report, Dept. of Civil Eng. & Eng.
Mechs., University of Arizona, Tucson, AZ, USA, 1987.

2. Desai, C.S. and Ma, Y, “Modelling of Joints and Interfaces Using the Disturbed
State Concept,” Int. J. Num. and Analyt. Methods in Geomech., 16, 9, 1992, 623–653.

3. Desai, C.S., “Constitutive Modelling Using the Disturbed State as Microstruc-
ture Self-Adjustment Concept,” Chap. 8 in Continuum Models for Materials with
Microstructure, H.B. Mühlhaus (Editor), John Wiley, Chichester, U.K., 1995.

4. Desai, C.S., “Hierarchical Single Surface and the Disturbed State Constitutive
Models with Emphasis on Geotechnical Applications,” Chap. 5 in Geotechnical
Engineering, K.R. Saxena (Editor), Oxford & IBH Pub. Co., New Delhi, India,
1994.

5. Desai, C.S. and Toth, J., “Disturbed State Constitutive Modeling Based on
Stress–Strain and Nondestructive Behavior,” Int. J. Solids & Structures, 33, 11,
1619–1650, 1996.

6. Wathugala, G.W. and Desai, C.S., “Damage Based Constitutive Model for
Soils,” Proc. 12th Congress on Appl. Mech., Ottawa, Canada, 1989.

7. Armaleh, S.H. and Desai, C.S., “Modelling and Testing of Cohesionless Material
Using the Disturbed State Concept,” Int. J. Mech. Behavior of Materials, 5, 1994,
279–295.

8. Katti, D.R. and Desai, C.S., “Modeling and Testing of Cohesive Soil Using
Disturbed State Concept,” J. of Eng. Mech., ASCE, 121, 5, 1995, 648–658.

9. Schofield, A.N. and Wroth, C.P., Critical State Soil Mechanics, McGraw-Hill,
London, UK, 1968.

10. Kachanov, L.M., Introduction to Continuum Damage Mechanics, Martinus Nijhoft
Publishers, Dordrecht, The Netherlands, 1986.

11. Desai, C.S., “Evaluation of Liquefaction Using Disturbed State and Energy
Approaches,” J. of Geotech. and Geoenv. Eng., ASCE, 126, 7, 2000, 618–631.

12. Desai, C.S., Park, I.J., and Shao, C., “Fundamental Yet Simplified Model for
Liquefaction Instability,” Int. J. Num. Analyt. Meth. Geomech., 22, 1998, 721–748.

13. Desai, C.S., Shao, C., and Park, I.J., “Disturbed State Modelling of Cyclic Behavior
of Soils and Interfaces in Dynamic Soil-Structure Interfaces,” Proc. 9th Int. Conf.
On Computer Methods and Adv. in Geomech., Wuhan, China, 1997.

w� h�

ln 1
D
Du
------� 

  s�ln 1
�D

h�----- 
  w�

���

ln 1 D
Du�( ) ln[1 �D
h�( )
w�

]� s�



© 2001 By CRC Press LLC

14. Weibull, W.A., “A Statistical Distribution Function of Wide Applicability,”
Applied Mechanics, 18, 1951, 293–297.

15. Desai, C.S., Kundu, T., and Wang, G., “Size Effect on Damage Parameters for
Softening in Simulated Rock,” Int. J. Num. Analyt. Methods in Geomech., 14, 1990,
509–517.

16. Desai, C.S., Chia, J., Kundu, T., and Prince, J., “Thermomechanical Response
of Materials and Interfaces in Electronic Packaging: Parts I and II,” J. of Elect.
Packaging, ASME, 119, 4, 1997, 294–300; 301–309.

17. Desai, C.S., Basaran, C., and Zhang, W., “Numerical Algorithms and Mesh
Dependence in the Disturbed State Concept,” Int. J. Num. Methods in Eng., 40,
16, 1997, 3059–3083.

18. Desai, C.S., Dishongh, T., and Deneke, P., “Disturbed State Constitutive Model
for Thermomechanical Behavior of Dislocated Silicon with Impurities,” J. of
Appl. Physics, 84, 11, 1998.

19. Dishongh, T.J. and Desai, C.S., “Disturbed State Concept for Materials and
Interfaces with Application in Electronic Packaging,” Report to NSF, Dept. of
Civil Engng. and Engng. Mechanics, University of Arizona, Tucson, AZ, USA,
1996.

20. Boltzmann, L., Lectures on Gas Theory, University of California Press, S. Brush
(translator), 1998, 1964.

21. Prigogine, I. and Stengers, I., Order out of Chaos: Man’s New Dialogue with Nature,
Bantam Books, New York, 1984.

22. Halliday, D. and Resnick, R., Physics, John Wiley & Sons, New York, 1966.
23. Haasen, P., in Dislocation Dynamics, edited by A.R. Rosenfield et al., Battle

Institute Materials Science Colloquia, 1967; McGraw-Hill, New York, 1968.
24. Dillon, D.W., Tsai, C.T., and De Angelis, R.J., “Dislocation Dynamics During

the Growth of Silicon Ribbon,” J. of Applied Physics, 60, 5, 1986, 1784–1792.
25. Basaran, C. and Yan, C.Y., “A Thermodynamic Framework for Damage Mechan-

ics of Solder Joints,” J. of Electronic Packaging, ASME, 120, 4, 1998, 379–384.
26. Dunstan, S., Principles of Chemistry, Van Nostrand Reinhold Co., New York,

1968.
27. Press, W.H., Plannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical

Recipes in Pascal, Cambridge Univ. Press, Cambridge, U.K., 1986.
28. Toth, J. and Desai, C.S., “Development of Lunar Ceramic Composites, Testing

and Constitutive Modeling Including Cemented Sand,” Report, Dept. of Civil
Engng. and Engng. Mechanics, University of Arizona, Tucson, AZ, 1994.



© 2001 By CRC Press LLC

4
DSC Equations and Specializations

CONTENTS
4.1 Relative Intact Response
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4.4 General Formulation of DSC Equations
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4.6 Examples

In Chapter 2 we derived the following equations:

(4.1)

(4.2)

As discussed earlier, the DSC involves different stresses  and strains
 in the material parts in the RI and FA states, respectively; see Fig. 4.1.

The latter causes relative motions or a diffusion-type process between the
material parts in the RI and FA states. As a simplification, we can express a
relationship between the strains in the RI and FA parts as [Fig. 4.1(b)]

(4.3)
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where Iijk� is the unit tensor and �ijk� is the relative motion tensor. If the mate-
rial is assumed isotropic and D is considered to be a weighted (average)
value, � can be expressed as a scalar as

� � wD (4.4)

where w is a parameter. Then Eq. (4.3) becomes

(4.5)

Here � � wD, where 0 � D � 1 and w � 0. With the above definition of the
relative motion parameter between the RI and FA strains, the first two terms
in Eq. (4.2) can be expressed in terms of the RI strains, .

Now consider dD in the third term in Eq. (4.2):

(4.6)

where D is expressed in terms of 	D [see Eq. (4.13a) ahead]. Also

(4.7)

FIGURE 4.1
Stresses and strains in RI, FA, and observed states: the randomly distributed RI and FA parts
are shown as collected together.
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where F is the yield function in the plasticity model, e.g., F in the HISS �0-
model (Chapter 7). Therefore,

(4.8)

and

(4.9a)

(4.9b)

Now,

(4.10)

and

because �ij 
 �ij � �ii � 3. Therefore,

(4.11)

The parameter � in Eq. (4.10) is given by (see Chapter 7)

(4.12)

Now, recall that D can be expressed as [Eq. (3.19a), Chapter 3]

(4.13a)
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(4.13b)
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Substitution of Eqs. (4.11) and (4.13b) in Eq. (4.6) leads to

(4.14a)

or

(4.14b)

Now, the DSC equations (4.1) become

(4.15a)

or

(4.15b)

or

(4.15c)

Here,  is the constitutive tensor given by

(4.16a)

or in matrix notation:

 (4.16b)

4.1 Relative Intact Response 

The RI response given by  in Eq. (4.2) can be defined by using elastic,
elastoplastic, elastoviscoplastic, etc., characterizations. For example, consider
the �0-version of the HISS plasticity model (Chapter 7) in which the yield
function, F, is given by

(4.17)
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where �, n, and � are material parameters, � is the hardening or growth func-
tion, � J2D/ ,  � , R is the bonding stress, Sr � 

J3D 
 . Then the constitutive equation for the RI part with the plasticity
model is given by

(4.18a)

or

(4.18b)

where

(4.18c)

or in matrix notation:

(4.18d)

4.1.1 Fully Adjusted Response

If it is assumed that the FA parts carry only the hydrostatic stress and no
shear stress (other characterizations have been discussed in Chapter 3) and
that the FA can be characterized by using the elastoplastic RI response, the
constitutive matrix  can be expressed as

(4.19a)
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where

and Cij are the components of the elastoplastic matrix, . If the FA
response is assumed to be linear elastic,  � � � K, which is the bulk
modulus.

Hence, the DSC equations are given in matrix notation as

(4.19b)

(4.19c)

Note that in Eq. (4.19b), the observed or average stress increment is expressed
in terms of the strain increment in the RI part. As discussed subsequently in the
Section entitled Implementation of the DSC Model in Chapter 13, one of the com-
putational strategies is to implement Eq. (4.19b) and solve the finite-element
equations iteratively for a given (or computed) RI strain increment. In other
words, under displacement (strain) controlled loading, iterations are performed
by holding the applied strains constant. For force (stress) controlled loading,
iterations are performed by holding the strains from the computed strain incre-
ments. Alternative computational strategies are given in Chapter 13.

4.2 Specializations of DSC Equations

The general form of the DSC, given in Eq. (4.1), can provide a hierarchical
basis for specialized models. A number of such specializations are given here.

4.2.1 Linear Elastic

If the material does not involve any disturbance (D � 0) and there are no plastic
or irreversible deformations, Eq. (4.2) would yield the simple incremental
nonlinear elastic (continuum) model:
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where i denotes the RI state, which in this case involves a nonlinear elastic
characterization, and  is the traditional tangent elastic constitutive tensor
corresponding to generalized Hooke’s law (see Chapter 5). If the material
is linearly elastic,  will involve constant moduli.

4.2.2 Elastoplastic

If there is no disturbance but the material experiences plastic or irreversible
deformations, Eq. (4.2) will specialize to

(4.21)

where  is the elastoplastic constitutive tensor, Eq. (4.18a). It will depend on
the yield criteria (F) and flow rule used; details are given in Chapters 6 and 7.

4.2.3 Elastoviscoplastic

With D � 0, Eq. (4.2) can specialize to a viscoelastic or elastoviscoplastic char-
acterization for which time integration is required. Details of the develop-
ment of the DSC with this characterization for the RI response are given in
Chapter 8.

4.2.4 Thermal Effects

The effect of temperature on the material response can be included, in a simpli-
fied manner, by expressing various elastic, plastic, viscous, and disturbance
parameters as functions of temperature. A simple expression that can express
the temperature dependence of most of these parameters is given by (1)

(4.22)

where p is the parameter, pr is value of the parameter at the reference tem-
perature, Tr (say, 300K), and c is a parameter. The values of pr and c are found
from laboratory stress–strain-strength tests at different temperatures. Details
including the effect due to the coefficient of thermal expansion are given in
subsequent chapters.

4.2.5 Disturbance Models

As discussed previously, the RI response can be characterized as elastic, elas-
toplastic, viscoplastic, etc., with temperature dependence. If the disturbance
caused in the material’s microstructure is included, Eq. (4.2) will represent
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the general model. Various simplified assumptions lead to specializations of
the general model, some of which are discussed below.

4.2.6 Classical Continuum Damage Model

In the continuum damage model (2), it is assumed that the damaged parts
can carry no stress at all, and they act as voids. In other words, the observed
response derives essentially from the undamaged parts, whose stress–strain-
strength behavior is degraded because of the existence of the damaged parts.
For instance, the damage parameter, �, is defined as

(4.23)

where is the volume of the damaged part and V is the total volume of the
material element. Then, � represents the special case of D (� �), and Eq. (4.2)
specializes to

(4.24)

as the terms related to the damaged part vanish.
During loading and deformation, microcracks can develop and coalesce

and lead to macrocracks. Zones of such distributed cracks in a material may
not lose all the strength or act like voids. In other words, they can possess
finite but modified (reduced) levels of strength. Such zones deform and inter-
act with the undamaged zones. As a consequence, the observed response of
the material is influenced by the coupling or interaction between the undam-
aged and damaged parts. The classical damage model, Eq. (4.24), does not
include this interaction. The lack of the interaction, which can play an impor-
tant role in the material’s response, may not be realistic. Furthermore, it ren-
ders the continuum damage model to be a local model, which does not allow
for nonlocal effects due to the influence of the response of neighboring points
(regions) on the stress and strain at a point in the material. As a result, the
classical damage model does not include the internal characteristic dimension,
which can lead to pathological or spurious mesh dependence when it is
implemented in a computational (finite-element) procedure (3, 4). Further
details are given in Chapter 12.

Damage Model with Microcrack Interaction. In order to allow for the
nonlocal effects and interaction between the damaged and undamaged parts,
various investigators (e.g., 3, 5, 6) have modified the continuum damage
model. We shall review a few of these works in Chapter 12. Here we comment
that the DSC model can allow implicitly for the factors such as microcrack
interaction and characteristic dimension (4); see also Chapter 12.
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4.2.7 DSC Model Without Relative Motions

As stated earlier, the general DSC model can include different stresses and
strains in the RI and FA parts. Now, the incremental strain equations can be
written as

(4.25)

where  and  show the functional dependence of total strains on the
strains in the RI and FA parts. If it is assumed that the observed, RI, and FA
strains are equal, that is, there is no relative motion between the RI and FA
parts, we have

(4.26)

Then the behavior of the material can be characterized on the basis of only
the stress equations, Eq. (4.2). The assumption of compatible strains, Eq.
(4.26), can introduce an error; however, the stresses in the two parts can still
be different [Eq. (4.2)].

FA Part—Constrained Liquid (Chapter 3). If it is assumed that the FA
part can carry no shear stress but can carry hydrostatic stress Eq. (4.2) is sim-
plified further. This assumption implies that the FA parts are constrained by
the surrounding RI parts and act like a constrained liquid. Then Eq. (4.2) spe-
cializes to

(4.27)

An additional assumption that the hydrostatic stresses in the RI and FA
parts are equal (i.e.,  � ) may sometimes be appropriate. Then Eq. (4.27)
reduces to (7, 8)

(4.28)

In the following, we shall discuss the critical-state characterization of the FA
behavior. However, appropriate laboratory tests are not often available for all
materials (other than geologic and concrete) to characterize and find parame-
ters for the critical-state behavior. Hence, for practical applications, Eq. (4.28)
may provide satisfactory characterization for some materials like metals, alloys,
and ceramics. In this case, it is relatively easy to characterize the FA response
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corresponding to the second term in Eq. (4.28), which requires the (tangent)
bulk modulus (K ) for the material in the FA state, if it were characterized as elas-
tic, and relevant plasticity parameters if it were characterized as elastoplastic.

4.2.8 Critical-State Characterization for FA Response

As discussed in Chapter 3, an initially loose or dense (granular) material
with a given initial mean pressure p0 � J10/3 approaches the critical state at
which the material continues to experience shear strains under the constant
shear stress reached up to that state. Thus, the material at the critical state
continues to carry the specific shear stress for the given initial pressure and
can be considered to act like a constrained liquid–solid. This state can provide
a realistic simulation for the behavior of material at the FA state. It may be
noted, however, that the use of the critical-state to represent the FA state in
the DSC involves different considerations than those in the classical critical-
state concept in soil mechanics (9). In the latter, the main attention has been
toward the characterization of the final critical (collapse or failure) behavior
of soils (clays). In the DSC, on the other hand, the FA material considered
to be at the critical state can exist and grow, at distributed locations, from
the very beginning of the loading. Only in the limiting case does the entire
material element approach the critical state.

The behavior of material at the critical state is characterized based on the fol-
lowing two equations (see also Chapter 3):

(4.29a)

(4.29b)

where  and  are the invariants at the critical state (here, J1�3 is non-
dimensionalized with respect to pa),  is the slope of the  vs.  line
[Fig 3.3(d), Chapter 3],  is the initial value of the critical void ratio, , cor-
responding to  � 3pa, pa is the atmospheric pressure constant, and � is the
slope of the e vs. �n ( /3pa) line (Fig. 3.3(e)).  in Eq. (4.2) can now be
obtained by using Eq. (4.29), as described below.

4.2.9 DSC Equations with Critical State

Consider the stress and incremental stress relations in Eq. (4.1). The observed
stress is now expressed as the sum of the shear and isotropic components as

(4.30a)
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If we assume that  � � � J1, Eq. (4.30a) reduces to

(4.30b)

Now, as a simplification, assume the following relation between the shear
stresses:

(4.31a)

which with the relation 1�2SijSij � J2D leads to

(4.31b)

Now, from Eq. (4.29a), we derive

(4.32)

where � � / .
Therefore,

(4.33)

Now

(4.34a)

Hence, from Eqs. (4.30b) and (4.32), we have

(4.34b)

(4.34c)

Differentiation of Eq. (4.34c) leads to

(4.35a)
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or

(4.35b)

Finally,

(4.35c)

in which

(4.36a)

and

(4.36b)

where Kt is the (tangent) bulk modulus. Equation (4.35c) expresses the
observed stress increment in terms of the RI stresses, and stress and strain
increments, the critical-state parameter ( ), and the stress ratio, �. It
involves the assumption that the mean pressures in the observed, RI, and FA
parts are equal, which can be appropriate for many situations. Note that if

� 0, that is, the FA part cannot carry any shear stress, Eq. (4.35c) will
reduce to Eq. (4.28).

Furthermore, as will be discussed later (Chapter 13), Eq. (4.35) leads to the
computation of observed stress increments, , and the RI strain increments,

. Then we need to evaluate the observed strain increment,  correspond-
ing to . Often it is possible to make the additional assumption that the total
(or deviatoric or hydrostatic) strains are equal in the three parts, that is,

� � . This assumption can be considered to be similar to compat-
ibility of strains (no diffusion) in the components of a porous multiphase
material (10), implying that there are no relative motions between the RI and
FA parts. With this assumption of compatible strains, the DSC formulation
would require use of only the stress equations (4.35), and its implementation
in the computer procedures would be simplified.
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If the strains and mean pressures are different in the three parts, iterative
procedures are needed (Chapter 13). Then it is necessary to develop strain
equations, as discussed below.

4.3 Derivation of Strain Equations

In general, the three strains , , and , and their increments can be dif-
ferent, leading to relative motion between the RI and FA parts (Fig. 4.1). The
observed incremental strains, , can be expressed as

(4.37)

As indicated before, various assumptions are possible, the simplest being
that � � , which would need consideration of only Eq. (4.35). In
general, however, if the three strains are different, we can express them as

(4.38a)

(4.38b)

where f1 and f2 are functions of D. This situation would require an iterative
procedure with the assumption that at the start of the incremental loading,
f1(D) � f2(D) � 1.0.

If it can be assumed that the deviatoric strains are equal, i.e.,  � �
, then the volumetric strains will be different in the three parts, which can

be expressed by using the critical-state concept, as described below.

4.3.1 Strain Equations Using Critical State*

Let V be the total volume of the material element for solid skeleton. Then,

(4.39)

where is the volume of solids in the RI state and  is the volume of solids
in the FA state. As the material is porous, it consists of a solid particle skele-
ton, and voids or pores. The pores can be fully or partially saturated with a
fluid and gas (air). For the present, we consider dry material; the saturated

* Taken from Refs. (8, 11, 12).
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condition will be treated later in Chapter 9. As a result, we deal with effective
stresses.

We decompose the volume of solids, Vs, and the volume of voids, Vv , as
follows:

(4.40)

(4.40b)

where the superscripts i and c denote volumes in the RI and FA states, respec-
tively. In the case of porous materials, the void ratio (e) is defined to denote
the ratio of the volume of voids (Vv) to that of solids (Vs) (13). Hence,

(4.41a)

or

(4.41b)

Now let the disturbance based on the volume of solids at critical state 
to the total volume of solids (Vs) be given by

(4.42a)

hence,

(4.42b

Therefore,

(4.42c)

where  �  is the void ratio of the RI part and  � is the void
ratio of the FA parts.

Differentiation of  in Eq. (4.42c) gives (here, the subscript e on D is
dropped for convenience)

(4.43)
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The relation between incremental volume (d�v) and the void ratio (de) is
given by (9, 13, 14)

(4.44)

where e0 is the initial void ratio. Then Eq. (4.43) becomes

(4.45)

The observed strain, , can be written as

(4.46)

Now, from Eq. (4.29b), the void ratio can be expressed as

(4.29b)

Therefore,

(4.47a)

and

(4.47b)

Then Eq. (4.46) leads to

(4.48)
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Hence, with the FA state simulated by using the critical-state equations, the
solution should lead to (approximate) simultaneous satisfaction of the stress,
Eq. (4.35), and strain, Eq. (4.48), during the iterative procedures described in
the following and in Chapter 13.

The foregoing simulation for the FA material by using the critical-state
equations, Eq. (4.29), is used for geologic (soils and rocks) materials and con-
crete, because volumetric (void ratio) measurements are often available
together with the stress–strain response. For materials such as metals and
alloys, volumetric measurements are usually not available. Hence, the use of
the critical-state equations may not be feasible. In such cases, the alternative
simulation for the FA state as a constrained liquid that can carry mean stress
but no shear stress (  � 0.0) can be used [Eq. (4.28)].

4.4 General Formulation of DSC Equations

The assumptions of compatible strains and mean pressures in the three states
lead to simplified equations only in terms of observed stress increment. How-
ever, in general, the strains and mean pressure can be different, and it
becomes necessary to obtain convergent solutions based on both the stress
and strain equations, Eqs. (4.2) and (4.48). In the following, we discuss such
a general procedure.

The functions f1 and f2 in Eq. (4.38) may be assumed to be scalars �2 and �1,
which can vary during the incremental iterative procedure (15):

(4.49a)

(4.49b)

Now Eq. (4.2) can be expressed in matrix notation as

(4.50a)

where dD �  [Eq. (4.14b)]. Substitution of Eq. (4.49) into Eq. (4.50a) leads
to

(4.50b)

where

m

d� ij
c

�1d� ij
i or d�

˜
c

�1d� i
� �

d� ij
i

�2d� ij
a or d�

˜
i

�2d�
˜

a
� �

d�
˜

a 1 D�( )C
˜

id�
˜

i DC
˜

cd�
˜

c R
˜

T
�
˜

c
�
˜

i
�( )d�

˜
i

� ��

R
˜

Td�
˜

i

d�
˜

a 1 D�( )�2C
˜

i
�1�2DC

˜
c

�2R
˜

T
�
˜

c
�
˜

i
�( )� �[ ]d�

˜
a

�

L
˜ nd�n

a
�

L
˜ n 1 D�( )�2C

˜
i

�1�2DC
˜

c
�2R

˜
T

�
˜

c
�
˜

i
�( )� ��



© 2001 By CRC Press LLC

The values of �1 and �2 are usually not known, except at the beginning of the
loading, when they can be assumed to be unity, implying that at the start, the
observed, RI, and FA strains are equal. The values of �1 and �2 can be calcu-
lated (during iterations) as follows, by assuming that the mean pressure in the
RI and FA (critical) parts are the same, i.e.,

(4.51a)

Now, from Eq. (4.47b),

(4.51b)

and

(4.51c)

where is relevant to the volumetric part of .
Therefore,

(4.52a)

and hence,

(4.52b)

Now, the observed strain increment can be written as

(4.53a)

and

(4.53b)

where � � denotes the norm, e.g., the sum of the strain increments. Therefore,
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Here �, the interpolation factor (0 � � � 1), can be assumed to be the distur-
bance, D (0 � D � 1), which varies during the incremental-iterative analysis.

4.5 Alternative Formulations of DSC

Consider a material element composed of two materials, 1 and 2 [Eq. (2.8),
Chapter 2]. Elements of each material can involve RI and FA states during its
deformation. The incremental equation for materials 1 and 2 can be expressed as

(4.55a)

and

(4.55b)

Then the observed incremental response of the composite element can be
written as

(4.56)

For a material element composed of solids and fluid, the incremental form
of Eq. (2.14b) is derived as

(4.57a)

For bonded materials, e.g., Eq. (2.30a), the incremental equations are given by

(4.57b)

4.6 Examples

Example 4.1
Consider the uniaxial stress–strain behavior, shown in Fig. 4.2. Assume the
RI behavior to be (a) linear elastic and (b) nonlinear elastic simulated by a
hyperbola. Assume the FA stress state as  � 17 N/ . Also assume that
the disturbance, D [Eq. (4.13a)], is expressed only in terms of the axial total
strain (�) or plastic strain ( ).
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Evaluate the disturbance D from

(1a)

for the RI response as linear and nonlinear elastic.
Derive the incremental Eq. (4.15) for the one-dimensional behavior by

ignoring other strains, in terms of dD � � , where m is any point on
the stress–strain curve. Also determine dD by using the following equation:

(1b)

Here, Du � 1.0 can be assumed.

Example 4.2
Consider the elastoplastic response shown in Fig. 4.3.

Derive Eq. (4.15) for the one-dimensional case with the assumptions similar
to those in Example 4.1. Here, D can be given by

(2a)

where  is the irreversible strain. The term dD can be obtained by using Eq.
(4.14b). The yield function, F, is given by

F � � � �y � 0 (2b)

Hint: Obtain A and Z by plotting �n( ) vs. �n[��n(1 � D)].

FIGURE 4.2
Uniaxial stress–strain curve.
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Example 4.3
Derive Eq. (4.15) for the one-dimensional case in Example 4.2 by using the
von Mises criterion:

(3a)

Example 4.4
Consider the lateral strains, �2 � �3, for the uniaxial stress behavior. Let 	 be
given by

(4a)

and

(4b)

Derive Eq. (4.15) by using the von Mises criterion.
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5
Theory of Elasticity in DSC

CONTENTS
5.1 Linear Elasticity

5.1.1 Nonlinear or Piecewise Linear Behavior
5.2 Variable Parameter Models

5.2.1 Functional Forms
5.2.2 Hyperelastic Models
5.2.3 First-Order Model
5.2.4 Second-Order Cauchy Elastic Model

5.3 Relatively Intact Behavior
5.4 Fully Adjusted Behavior
5.5 Disturbance Function
5.6 Material Parameters

5.6.1 Thermal Effects:  Thermoelasticity
5.7 Examples

5.7.1 Correlation with Crack Density

As derived in Chapter 2, the DSC equations are given by

(5.1)

In this chapter, we present the theory of elasticity as the model for the
behavior of the material in the RI state, represented by the constitutive tensor,

.

5.1 Linear Elasticity

If the behavior of the RI material is characterized as linear elastic with the
assumption of isotropy, the constitutive equations will be given by (1–3)
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or

(5.2b)

where  is the stress tensor for the RI material

(5.3)

and  is the strain tensor

(5.4)

where �11, �22, �33 and �11, �22, �33 are the normal, and �12, �23, �13 and �12, �23,
�13 the shear components of stress and strain, respectively.  and  are the
vectors of stress and strain components, given by

(5.5)

The fourth-order constitutive tensor, , for linear elastic and isotropic
materials can be expressed in matrix notation using the generalized Hooke’s
law as (4)
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Here, 2�12 � �xy, 2�23 � �yz, and 2�13 � �xz, where �xy ,�yz, and �xz are engineer-
ing shear strains, E is the elastic modulus, and ν is the Poisson’s ratio.

In terms of the shear modulus, G, and the bulk modulus, K, Eq. (5.6)
becomes

(5.7)

The relations between the elastic constants are given by

(5.8a)

(5.8b)

5.1.1 Nonlinear or Piecewise Linear Behavior

Note that the material parameters E and �, K and G are evaluated as tan-
gent quantities when Hooke’s law, Eq. (5.2), is written in the incremental
form

(5.9)

where the subscript t denotes tangent quantity. In this case, the nonlinear
response (see Fig. 5.1)is approximated as piecewise linear by dividing the
nonlinear behavior in a number of linear increments. The material parame-
ters are often assumed to be constant within each increment. The monotonic
response of some nonlinear materials is often simulated by using the piece-
wise linear approximation in which the parameters or moduli (Et, νt, Gt, Kt)
vary from increment to increment. Such models are often referred to as quasi-
linear or variable parameter or variable moduli (4).
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5.2 Variable Parameter Models

Here, the nonlinear behavior expressed as a stress–strain response can be
simulated using mathematical functions. Then, the tangent moduli are eval-
uated as derivatives of the function at (selected) points in an increment. Some
of the commonly used functions are stated below.

5.2.1 Functional Forms

Observed nonlinear stress–strain data can be simulated by using mathemat-
ical functions such as polynomials, hyperbola, spline, and exponential (4).
For example, schematics of such stress–strain curves for different initial mean
pressure (�0) and density (�0) are shown in Fig. 5.2; here the stress–strain
responses are expressed in terms of stress measure, which can be axial
stress (�1), stress difference (�1 � �3), octahedral shear stress, 	oct, or second
invariant  of the deviatoric stress tensor, Sij, given by

(5.10a)

where  Sij � � ij � (1
3)�ii�ij, �ii � J1 � first invariant of �ij, �ij � Kronecker delta,
�i (i � 1, 2, 3) � principal stresses, and

(5.10b)

FIGURE 5.1
Piecewise linear approximation to nonlinear behavior.
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The strain measure,  in Fig. 5.2, can be the axial strain, �1, strain difference
�1 � �3, octahedral shear strain, �oct, or the second invariant (I2D) of the devi-
atoric strain tensor, Eij:

(5.10c)

(5.11a)

(5.11b)

where I1 is the first invariant of the total strain tensor, �ij, �i (i � 1, 2, 3) are the
principal strains, and

(5.11c)

As is indicated in Fig. 5.2, the stress–strain behavior depends on factors such
as (initial) mean pressure, p0 or �0, and density (�0). Hence, for a given value
of �0, the functional form of the stress–strain relation can be expressed as

(5.12a)

and for the behavior dependent on �0

(5.12b)

FIGURE 5.2
Functional representation of nonliner stress–strain response.
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or

Then, the tangent moduli such as Et (Young’s elastic), vt (Poisson’s ratio), Gt

(shear modulus), and Kt (bulk modulus) can be obtained as appropriate
derivatives of the function in Eq. (5.12). For example:

(5.13a)

(5.13b)

(5.13c)

(5.13d)

The above quasilinear elastic models are based on the idea that the nonlin-
ear response can be simulated incrementally based on the variable values of
the tangent material moduli as functions of stress and/or strain. The nonlin-
ear behavior can be simulated more formally by using higher-order or hyper-
elastic and hypoelastic models; the above quasilinear models can be shown
to be special (lowest) cases of the higher-order models (4).

5.2.2 Hyperelastic Models

Cauchy and Green elastic are two of the main models often used to charac-
terize the nonlinear elastic behavior of materials. Details of these models are
given in various publications (1, 4–6). Here we give a brief description of the
Cauchy elastic models, in which the relation between stress and strain is
expressed as

(5.14a)

where �0, �1,…, �n represent response functions or parameters. By using the
Cayley–Hamilton theorem (7), we can write Eq. (5.14a) as

(5.14b)
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where 
0, 
1, and 
2 are the response functions expressed in terms of the
invariants I1, I2, and I3 of the strain tensor. We can derive various special forms
of Eq. (5.14) with different orders, some of which are described below.

5.2.3 First-Order Model

For the first-order model, only the first two terms in Eq. (5.14b) are relevant,
and 
2 � 0. Then 
1 is a constant (say, � �2), and 
0 can be a linear function
of the first strain invariant, say (� �0�ij � �1I1�ij), and Eq. (5.14) becomes

(5.15a)

In this equation, �0�ij is the initial (isotropic) stress when the strain � 0.
Hence, if we start from a stressfree condition, Eq. (5.15a) reduces to

(5.15b)

where �1 and �2 are elastic material constants. It can be shown that the first-
order Cauchy elastic model, Eq. (5.15b), is the same as linear elastic Hooke’s
law for isotropic materials. This can be done as follows:

Let us first consider the state of uniform volumetric deformation. Then the
strain tensor, �ij, is given by

(5.16a)

Substitution of Eq. (5.16a) in Eq. (5.15) gives

(5.16b)

For isotropic or hydrostatic stress condition, the mean pressure, p, is given by

(5.17a)

Therefore, Eq. (5.16b) becomes

(5.17b)

where K is the bulk modulus; see Fig. 5.3(a).

�ij �0�ij �1I1�ij �2�ij� ��

�ij �1I1�ij �2�ij��

�ij
I1

3
---- 

  �ij

I1
3 0 0
0 I1
3 0
0 0 I1
3 

 
 
 
 

� �

�ij �1I1 �2
I1

3
----� 

  �ij�

p
�ij

3
------

J1

3
----

�11 �22 �33� �

3
--------------------------------------� � �

J1

3
---- �1

�2

3
-----� 

  I1 KI1� �



© 2001 By CRC Press LLC

Now we consider the case of pure shear strain condition, which implies
that for an isotropic material, there is no volumetric strain and there exist
only nonzero shear strain components, �12 � �21. Then Eq. (5.15b) becomes

(5.18a)

or

(5.18b)

Here, �12 �1/2 �12, where �12 is the engineering shear strain. Then, from Eq.
(5.18), we have

(5.19a)

FIGURE 5.3
Bulk and shear moduli.
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Therefore,

(5.19b)

where G � �2/2 is the shear modulus; see Fig. 5.3(b).
Now, substitution of �2 � 2G in Eq. (5.17b) leads to

(5.20)

and

(5.21a)

(5.21b)

With the above values of �1 and �2, Eq. (5.15b) is written as

(5.22)

Note that the strain tensor, �ij, can be decomposed as

(5.23)

where Eij is the deviatoric strain tensor. Then, Eq. (5.22) can be expressed as

(5.24)

where Sij is the deviatoric stress tensor and J1/3 is the mean pressure. Note
that Eq. (5.24) represents the generalized Hooke’s law for linear elastic behav-
ior, from Eq. (5.2).
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5.2.4 Second-Order Cauchy Elastic Model

We express 
0, 
1, and 
2 in Eq. (5.14b) in terms of the strain invariants such
that the resulting expression provides a second-order expression in strains.
Then we can write

(5.25a)

(5.25b)

(5.25c)

where �i (i � 1, 2,…,6) are material parameters or constants. Substitution of
Eq. (5.25) in Eq. (5.14b) results in 

(5.26)

It may be noted that the second-order model, Eq. (5.26), contains the first-
order (linear) model as a special case. Hence, the linear part of Eq. (5.26) is

(5.27)

This equation is the same as Eq. (5.24) in which �1 � K � 2G/3 and �4 � 2G.
Then Eq. (5.26) is given by

(5.28)

which includes six material parameters K, G, �2, �3, �5, and �6. These param-
eters need to be determined from laboratory tests. Details of other higher-
order models including the Green elastic are given in various publications
(4–6).

5.3 Relative Intact Behavior

For some materials, it is possible and can be appropriate to simulate the RI
response by using the linear elastic models described above, or quasilinear or
piecewise linear approximation, Eq. (5.9), or the higher-order or hyperelastic
model, e.g., Eq. (5.28), Fig. 5.4. For the linear elastic model, the constitutive
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tensor  for the RI material, Eq. (5.2), can be written as

(5.29)

For the quasilinear and (incremental) hyperelastic model, it can be written as

(5.30)

where the subscript t denotes tangent modulus, which is evaluated as the
derivative or slope (at a point) based on the function used to simulate the
behavior.

If there is no disturbance due to microcracking, damage, softening, or stiff-
ening, D in Eq. (5.1) will be zero, and the observed (denoted by a) and RI
responses will be the same. However, if a linear or nonlinear elastic material
experiences disturbance, the observed behavior, Fig. 5.4, will deviate from
the behavior without the disturbance, i.e., the RI response.

5.4 Fully Adjusted Behavior

If the material experiences microcracks and disturbance (damage), and if the
cracked zones are assumed to behave like voids, as in the classical damage mod-
els (8), then such FA or damaged zones will have zero strength (Chapter 3).
Hence, they can carry no stress, and the corresponding constitutive matrix in
Eq. (5.1) will be

(5.31a)

It may be realistic to assign a finite (small) elastic stiffness to the disturbed,
cracked, or damaged regions. Then,

(5.31b)

FIGURE 5.4
Elastic model as RI characterization.

Cijk�
i

Cijk�
i e( ) Cijk�

e K, G,  or E, �( )�

Cijk�
i e( ) Cijk�

e Kt, Gt; Et, �t( )�

C
˜

c 0
˜

�

C
˜

c C
˜

c Kt
c, Gt

c; Et
c
, �t

c( )�



© 2001 By CRC Press LLC

where the superscript c denotes the FA state,  etc. are (tangent) elastic
parameters with modified (reduced) values corresponding to the zone in
stress–strain response relevant to the FA state; see Fig. 5.4.

If it is assumed that the FA material can carry hydrostatic stress and no
shear stress, assuming that the bulk behavior of the FA material is the same
as that of the RI material, the constitutive matrix can be expressed as [see
Eq. (4.19a), Chapter 4]

(5.32a)

Now from Eq. (5.7), we can obtain

(5.32b)

or

Thus, the behavior of the FA material may be defined based on the bulk
modulus,  of the RI material. The bulk modulus can also be defined as Kc,
determined from the moduli (  or ) in the residual region of the
stress–strain response (Fig. 5.4).

5.5 Disturbance Function

Based on available stress–strain data (Fig. 5.4), the disturbance function, D,
can be expressed (approximately) as (Chapter 3)

(5.33)

Then, Eq. (5.1) can be used to obtain one-, two-, and three-dimensional ide-
alizations. For example, for the uniaxial case (�22 � �33 � 0.0) and isotropic
material, Eq. (5.1) reduces to 

(5.34)

and for the plane-stress case

(5.35)
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where

5.6 Material Parameters

For linear elastic behavior, the material parameters are E, ν, G, and K. In general,
for nonlinear behavior, these parameters are obtained as (average) slopes of the
unloading response. The elastic Young’s modulus, E, can be obtained from
uniaxial stress (�1 vs. �1) or triaxial tests (�1 or �1 � �3) vs. �1 (�3 � constant)
plots; see Fig. 5.5(a). Poisson’s ratio can be obtained from the lateral strain (�3)
or volumetric strains vs. �1 plots, shown in Fig. 5.5(b). The shear modulus, G, is
obtained from shear tests as the unloading slope of shear stress (	 or ) vs.
shear strain (� or ) plots; see Fig. 5.5(c). The bulk modulus is obtained from
volumetric or hydrostatic tests as the unloading slope of mean pressure (p or
J1/3) vs. volumetric strain (�v) plots; see Fig. 5.5(d).

5.6.1 Thermal Effects: Thermoelasticity

The temperature effects on the elastic response can be introduced by express-
ing the parameters, say, E and ν or K and G, as functions of temperature and
by modifying the elasticity equations to allow for the effect of the thermal
expansion. Then, Eq. (5.2) can be written as

(5.36)

where T is the temperature, �T is the coefficient of thermal expansion, dT is
the change in temperature, �ij is the Kronecker delta, and  is the tem-
perature-dependent constitutive tensor.

The material constants are determined from laboratory stress–strain tests
at different temperatures and are expressed in terms of the temperature. A
number of functional forms are possible and used in the literature (9–11).
The following form has often been used and can simulate the temperature-
dependent response of many materials (12):

(5.37)
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where Tr is the reference temperature (e.g., 300 K), pr is the value of the
parameter at temperature Tr , and c is a parameter found from laboratory
tests. For example, based on available laboratory tests at different tempera-
tures for 60/40 (Sn/Pb) solders (13–15), plots of variations of E, �, and �T

were obtained; see Fig. 5.6 (16). Then the thermal dependence of these param-
eters is expressed as

(5.38a)

(5.38b)

(5.38c)

where E300 � 23.45 GPa, ν300 � 0.40, and �T(300) � 3 � 10�6/K.

FIGURE 5.5
Elastic constants from laboratory test data.
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5.7 Examples

Example 5.1
Consider the one-dimensional specialization of the DSC equations (Eq. 5.1) as

(1a)

where �1 and �1 are uniaxial stress and strain, respectively, and E i is the elastic
modulus for the RI response. Here, for simplification, the effects of the other
strains are ignored.

FIGURE 5.6
Plots of relationship between elastic constants and temperature for 60% Sn–40% Pb solders,
(a) elastic modulus, (b) Poisson’s ratio, (c) thermal expansion coefficient (16).
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Figure 5.7 shows octahedral shear (	oct) or axial stress (�1)–strain (�1) behav-
ior of a material under uniaxial stress loading. The octahedral shear stress is
given by

(1b)

Therefore,

(1c)

Assume that the RI behavior is simulated as linear elastic with the elas-
tic modulus,  computed as the average of the unloading slopes of �1 vs.
�1 plot; see Fig. 5.7; it is found to be � 43,000 N/mm2. The FA response is
given by the residual asymptotic value of  � 8 N
mm2; hence,  �
17 N
mm2.

The disturbance, D, can be evaluated from

(1d)

where the  are different values on the linear elastic and observed curves,
respectively, and  � 17 N/mm2. The irreversible strains, , at different
points are computed from

(1e)

FIGURE 5.7
Uniaxial stress–strain curves.
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where

A plot of D vs.  using Eqs. (1d) and (1e) is shown in Fig. 5.8. It can also
be appropriate to use total strain, �1, with the plot of D vs. �1. Here we
assumed that D is expressed only in terms of the axial strains; that is, the
other two strains (�2 and �3) are not considered.

Now, the incremental Eq. (1a) can be integrated starting with the zero stress
and strain at the origin, by writing it as

(1f)

where k denotes increment and  � 0 because  is a constant value. Also,
we have assumed that the total stresses,  and , are evaluated at the pre-
vious increment.

Let the first strain increment  � 0.0005. The RI stress increment is
given by

The corresponding observed stress increment from Fig. 5.7 is found to be
about 21.0 N
 . Therefore,

As D0 � 0 at the origin, dD � 0.111 � 0.000 � 0.111.
Therefore,

FIGURE 5.8
Disturbance vs. irreversible strains: linear RI simulation.
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Now, consider the second strain increment,   � 0.0005. The total strain
� 0.0005 � 0.0005 � 0.001.

Therefore,

and

Hence,

Therefore, dD2 � 0.230 � 0.111 � 0.119, and

Therefore,

Consider the third increment as  � 0.002. Therefore, the total strain �
0.001 � 0.002 � 0.003. 
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Therefore,  � 37.08 � 3.11 � 40.19, which indicates the drop in the
observed stress after the peak stress.

The predicted stress–strain curve from the foregoing procedure is shown in
Fig. 5.9(a) and compares very well with the observed curve shown in Fig. 5.7.

Note 1. It is possible that in the early range of the stress–strain behavior,
D will be negative. In that case, D can be assumed to be zero, as in that range
no significant disturbance has occurred, and the RI and observed responses
are essentially the same.

Note 2. In the foregoing calculations, we have used the observed stress
from the given stress–strain curve so as to calculate the disturbance, D. This
is only for illustration purposes. In general, D can be calculated from the
graph of D vs. (plastic) strain (Fig. 5.8). Also, D can be expressed as

(1g)

FIGURE 5.9
Comparison of observed and predicted behavior.
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where Du corresponds to the ultimate or residual value. For instance, Du can
be calculated from the residual value of about 17.0 N/  (Fig. 5.7). The
irreversible strain trajectory (� ) is given by the total axial plastic strain, .
The parameters A and Z are then found by using the procedure given in
Chapter. 3. Then, for a given total strain increment, the corresponding plastic
strain increment and total plastic strain,  can be found. Substitution of Du,
A, Z, and  in Eq. (1g) gives the value of D. The increment or rate dD can
also be found by using Eq. (4.13), Chapter 4, as

(1h)

Figure 5.9(b) shows comparison of predicted and observed behavior obtained
by using dDk in Eq. (1h). The value of Du � 1.0 was assumed, and A � 651.80
and Z � 1.03 were found by using the procedure in Chapter 3.

Note 3. The calculations can be improved by using small strain incre-
ments and an iterative procedure. In the iterative procedure, the value of
the total stress,   at the end of the previous increment is used for the first
iteration during the increment. For subsequent iterations, the value of  at
the previous iteration can be used. The iterations can be continued until con-
vergence, that is, the two successive iterative values of  show a small dif-
ference � .

Example 5.2
Consider that the RI response for the problem in Example 5.1 is characterized
as nonlinear elastic and that the stress–strain curve is simulated by using the
hyperbola as

(2a)

where a and b are parameters related to the initial slope (Ei) and the asymp-
totic stress,  (Fig. 5.10).

In order to evaluate the RI stress, , we need to evaluate a and b, which
are given by

(2b)

(2c)
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The value of denotes the asymptotic stress (Fig. 5.10). A plot of the RI
stress–strain curve according to Eq. (2a) is shown in Fig. 5.10, together with
the observed stress–strain response. The disturbance, D, is now found using
Eq. (1d); the plot of D vs. irreversible strain, , is shown in Fig. 5.11.

As in Example 5.1, Eq. (1f) is now integrated to predict stress increments,
 and total stress,  � , where N is the number of strain incre-

ments. A plot of the predicted stress–strain curve is shown in Fig. 5.12, which
is in very good agreement with the observed behavior (Fig. 5.10).

Example 5.3
Figure 5.13 shows a linear one-dimensional elastic stress–strain (� ��)
response for a composite element made of two materials, denoted as 1 and
2. The observed response (a) of the composite can be expressed by using
the DSC (Chapter 2) in terms of the responses of the two materials. The
elastic moduli for material 1, observed, and material 2 are 100, 30, and 10,
respectively.

FIGURE 5.10
Stress–strain curve and hyperbolic simulation.

FIGURE 5.11
Disturbance vs. irreversible strains: nonlinear RI simulation.

�1
f

�1
p

d�1
a , �1

a
�i�1

N d�1
a( )



© 2001 By CRC Press LLC

It is seen that the disturbance, D, is constant � 0.777; note that for composite
materials, disturbance has a different meaning compared to that for the same
material element (Chapter 2). For example, at � � 0.10,  � 10,  � 3, and

� 1.0; therefore, D � (10 � 3)
(10 � 1.0) � 0.777. Then the observed
response, , can be found from

(3a)

For example, at � � 0.05:

Example 5.4
The observed nonlinear elastic response (a), Fig. 5.14, is expressed by using
hyperbolic relation, Eq. (2a). The responses of the components of the composite
material (1 and 2) are also expressed by using the hyperbolic relation. The

FIGURE 5.12
Predicted stress–strain curves: nonlinear RI simulation.

FIGURE 5.13
Composite material: two linear elastic components.

�
1

�
a

�
2

�
a

�
a 1 D�( )�

1 D�
2

��

�
a 1 0.777�( )5 0.777 0.5���

1.50�



© 2001 By CRC Press LLC

parameters a and b, from Eq. (2a), are obtained from the initial slopes and
asymptotic stresses as given in the following table.

Computation of stresses for different strains are shown below

Parameter Material 1 Observed (a) Material 2

E 43,000 N
 31,500 20,000
�f 75 N
 55 35
a 1/Ei � 2.33 � 10�5 3.18 � 10�5 5 � 10�5

b  1/�f � 0.0133 0.0182 0.0286

DSC Nonlinear Elastic as RI and FA Responses

� D

0 0 0 0 0
0.0005 16.69449 12.2399 7.77605 0.499481
0.001 27.3224 20.02002 12.72265 0.500172
0.002 40.08016 29.34703 18.65672 0.500999
0.003 47.46835 34.74233 22.09131 0.501478
0.004 52.28758 38.25921 24.3309 0.50179
0.005 55.67929 40.7332 25.90674 0.502009
0.006 58.19593 42.56829 27.07581 0.502172
0.008 61.6808 45.10854 28.6944 0.502397
0.01 63.97953 46.78363 29.7619 0.502545

FIGURE 5.14
Composite material: two nonlinear components.
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mm2
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The value of D is essentially constant, at 0.50. For example, the observed
stress for � � 0.005 is given by

Comment. As discussed in Chapter 2, the formulation of the DSC for an
element made of more than one material is referred to as multicomponent
DSC, which is also described further in Chapter 8.

Example 5.5
Figure 5.15 shows the observed bilinear response of a material; the yield
stress, �y � 1000 units. Assume that the RI response is simulated as linear
elastic with Ei � 1000 units, and the FA response as �c � 0, i.e., Ec

� 0. The
modulus,  after �y is 800 units. Evaluate the total and incremental stress for
a typical strain, � � 2 units. The disturbance, D, is given by

(5a)

Consider two points, � � 1 and � � 2. Let us evaluate  and  at � � 2.
The values of D at � � 1 and � � 2 are

FIGURE 5.15
DSC bilinear elastic response.
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Alternatively:

hence,

Example 5.6:  Ceramic Composite
A ceramic composite was fabricated by using a special thermal liquefaction
process (17–19) in which a mixture of finely ground basaltic rock and metal
(stainless steel) fibers (about 15% by weight) was heated in a furnace under
cycles of heating and cooling around the temperature of about 1100�C. Flat
specimens of 3.0 � 6.0 � 0.5 inch (7.6 � 15.2 � 1.3 cm) were tested under ten-
sion and compression loading, unloading, and reloading cycles; two tests
were performed for each of the plain and fiber-reinforced ceramic. In addi-
tion to the stress–strain behavior, ultrasonic P-wave velocity and attenuation
measurements were made at different locations on the specimen during the
loading cycles (18, 19).

The DSC model was used by assuming the RI behavior to be linear elastic
or elastoplastic (�0-model); the latter is considered in Chapter 7. The FA
material was defined using the assumption that it can carry only the
hydrostatic stress. Table 5.1 shows material parameters for the DSC model.

TABLE 5.1 

Typical Parameters for Typical Fiber-Reinforced 
Ceramic Composite Under Uniaxial Tension and 
Compression Tests (Disturbance parameters below 
are relevant to linear elastic RI simulation.)

Parameter Tension Compression

E 29 GPa 29 GPa
ν 0.24 0.24
� 0.000741 0.1565
� 0.75 0.76
n 6.00 5.88
a1 1.00 � 1.3 �
�1 0.972 1.29
R 167 MPa 25 MPa
h 0.003 0.044
w 4.53 4.53
s 2.03 2.03
Du 1.0 1.00

d�
a 1 0.1�( ) 2000 1000�( ) 0.1 0 0.1 0 1000�( )�����

900 100�( ) 800� �

�2
a

�1
a d�

a
� 1000 800� 1800� � �

10 14� 10 14�



© 2001 By CRC Press LLC

The disturbance function was defined by using the following expression
[Eq. (3.16a, Chapter 3]:

(6a)

where h, w, and s are material parameters and �D is the trajectory of deviatoric
plastic strains.

Figures 5.16(a) and (b) show typical comparisons between predictions by
the DSC model and test data for the tensile and compressive behavior of
fiber-reinforced specimens 1 and 2, respectively. Here, parameters from tests
on specimen 2 were used to predict the tensile behavior of test specimen 1;
and those from test 3 were used to predict the compressive behavior of test 2.
Thus, these are considered to be independent validations. It can be seen that
the prediction from the linear elastic simulation for the RI behavior provides
satisfactory correlations with the test data. 

5.7.1 Correlation with Crack Density

Hudson (20) proposed the following equation for crack density in a deform-
ing (elastic) material. It was assumed that the mean shape of randomly dis-
tributed cracks is circular and the wavelengths of elastic waves are large
compared with the size of cracks and with their separation distances, so that
the mean over the statistical ensemble can be used to predict properties of a
single sample.

(6b)

(6c)

where U11 � 16(1 � ν0)/3(2 � ν0), U33 � 8(1 � ν0)/3, ν0 and V0 are the Poisson’s
ratio and P-wave velocity in the RI material, and V� is the observed root mean
square P-wave velocity. Here, Cd �  where n is the open cracks per unit
volume, and a is the mean dimension (radius) of cracks (20).
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Figure 5.17 shows variations of Cd and disturbance, Dv, [computed by using
the ultrasonic P-wave velocities, [Eq. (3.9), Chapter 3] with  for the ten-
sile test on the fiber-reinforced ceramic.] Both Cd and Dv increase during the
virgin (monotonic) loading. During unloading, they decrease because as the

FIGURE 5.16
Comparisons between DSC predictions and test data for ceramic composites (18, 19):
(a) tensile response of specimen 1; (b) compressive response of specimen 2. (With permission
from Elsevier Science.)

J2D
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tensile stress is removed, the cracks close. Then, during reloading and sub-
sequent virgin loading, both increase. Thus, disturbance represents a meas-
ure of crack density, and both show consistent trends for the tension test
involving loading, unloading, and reloading.

Example 5.7:  Cemented Sand
As discussed in Chapter 2, the DSC can be used to characterize the behavior
of bonded materials such as rocks, concrete, and artificially cemented sand.
Here, we consider cemented Leighton–Buzzard sand with bonding material
(quick-setting cement) 5% by weight and 14% by weight of water (18, 19, 21).
Cubic specimens (100 � 100 � 100 mm) sizes were tested using a multiaxial

FIGURE 5.17
Crack density and disturbance during uniaxial loading, unloading, and reloading for ceramic
composites (18).
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test device, under different stress paths (Fig. 3.16, Chapter 3) and mean pres-
sures. Measurements were obtained both for the stress–strain and ultrasonic
(pressure and attenuation) properties.

The RI behavior was simulated as linearly elastic. The elastic moduli and
the disturbance parameters are shown in Table 5.2. The FA response was sim-
ulated by using the critical-state model from Chapter 4.

Figures 5.18 and 5.19 show comparisons between the predictions and
observed data for CTC (compression) and TE (extension) tests with �0 � 30
and 45 kPa, respectively; descriptions of stress paths are given in Fig. 3.16 and
Chapter 7. Both the stress–strain and volume change behavior are predicted
well by the DSC model.

Figure 5.20 shows the variations of crack density and disturbance with
 for the CTC 30 test. During the virgin loading both increase. During

unloading, as the load is removed, the microcracks experience opening, and
both Cd and D show an increase. During reloading, both decrease due to the
coalescence of the microcracks. Then, after the end of reloading, during the
virgin loading, both increase again. These are considered to be consistent
trends for the compression test.

The foregoing Examples 5.6 and 5.7 show that even with the assumption of
linear elastic behavior for the RI response, the DSC model provides satisfac-
tory predictions of the stress–strain and volumetric responses for the ceramic
composite and cemented sand. However, if the response of a (granular) mate-
rial involves such factors as coupling of volumetric response, it would be
more appropriate to adopt a plasticity model (e.g., �0-model) for the RI
behavior, because such a model allows for the volumetric coupling. Alterna-
tively, it may be possible to consider such coupling by including the volume
change response in the disturbance function while using the linear elastic
model for the RI response.

Example 5.8
Consider a composite made of three materials, as in Fig. 5.21. The elastic mod-
uli, E1 and E2, are equal to 43,000 and 31,500 N
  for materials 1 and 2,
respectively. The observed behavior and that of material 3 are simulated as

TABLE 5.2 

Parameters for Cemented Sand

Parameter Value

E 120 MPa
0.353

m 0.23
� 0.11

0.27
h 0.007

w (average) 1.30
s (average) 0.60

v

e0
c

J2D

mm2
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nonlinear elastic using the hyperbolic relation in Eq. (2a); the parameters a
and b are 5 �  and 0.0286, and 1 �  and 0.057, respectively. Two dis-
turbances are defined with respect to the responses of materials 1 and 3 (D13)
and materials 2 and 3 (D23) as

(8a)

(8b)

FIGURE 5.18
Comparisons between DSC predictions and multiaxial compression (CTC: �0 � 30 kPa) test
for cemented sand. (From Refs. 18 and 19, with permission from Elsevier Science.)
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The values of the strains, stresses and disturbances are given below:

The observed response can be found as the average response from the two
disturbance conditions as

(8c)

� D13 D23

0 0 0 0 0
0.0005 21.5 15.75 7.77605 3.891051 0.779374 0.672399
0.001 43 31.5 12.72265 6.369427 0.82656 0.747192
0.002 86 63 18.65672 9.345794 0.878533 0.826464
0.003 129 94.5 22.09131 11.07011 0.906544 0.867899
0.004 172 126 24.3309 12.19512 0.924059 0.893363
0.005 215 157.5 25.90674 12.98701 0.936045 0.910598
0.006 258 189 27.07581 13.57466 0.944764 0.923038
0.008 344 252 28.6944 14.38849 0.956598 0.939793
0.01 430 315 29.7619 14.92537 0.964256 0.950557

FIGURE 5.19
Comparisons between DSC predictions and multiaxial extension (TE: �0 � 45 kPa) test for
cemented sand. (From Refs. 18 and 19, with permission from Elsevier Science.)
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FIGURE 5.20
Crack density and disturbance during multiaxial loading, unloading, and reloading for
cemented sand, CTC: �0 � 30 kPa (18).

FIGURE 5.21
Composite material with three components: two linear elastic and one nonlinear elastic.
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For example, for � � 0.005,  is computed as
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6
Theory of Plasticity in DSC
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6.2 Incremental Equations
6.2.1 Parameters and Determination from Laboratory Tests
6.2.2 Cyclic Loading
6.2.3 Thermoplasticity

6.3 Examples

6.1 Introduction

The development and application of the theory of plasticity have occurred
over the last many years (1–13). The intention here is to describe briefly the
basic aspects of the theory and its use in the DSC.

The theory of elasticity (Chapter 5) is applicable if the material is elastic; that
is, upon removal of load, it returns to its original configuration along the same
path; see Fig. 6.1(a). However, except for limited ranges of loading, most mate-
rials do not return to their original configuration; that is, they follow different
paths during unloading. As a result, at the end of unloading, the material
retains a part of the deformation or strain, which is referred to as irreversible,
inelastic, or plastic strain, .  Hence, the total strain, �, at different points is�

p
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assumed to be composed of the plastic, , and the elastic or recoverable parts,
; Fig. 6.1(b).
If the material (element) is elastic up to point A and then yields plastically, as

in Fig. 6.1(b), it is referred to as elastoplastic material. If, after point A, it experi-
ences continuing deformation under the constant yield stress (�y), it is called
elastic perfectly plastic material. After the yield point A, if the material is
unloaded, it will not return to its original configuration and will experience plas-
tic strain, .

The “stiffness” of some materials may experience gradual decrease during
yielding; however, the stress under continuing loading increases after the
yield point.  In other words, every point during the loading is a “new” yield
point, and the next yield stress is greater than the previous yield stress.  Such
behavior is called elastic-plastic hardening response.

Many materials, e.g., geologic, concrete, and polymers, may exhibit very
little or no elastic region, and the point A0 is very near the origin [Fig. 6.1(b)].
That is, they exhibit irreversible strains almost from the very beginning of

FIGURE 6.1
Schematics of responses.
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loading, and harden or yield continuously.  Such a response is termed contin-
uous hardening or yielding.

If, after reaching the peak stress, the stress experiences a decrease compared
to the peak stress, the response is called strain softening; see Fig. 6.1(c). Some
materials may first exhibit a drop in stress after peak, i.e., strain-softening
response, and then after a certain level of threshold strain (�t) may harden or
stiffen.  Such a behavior is called strain-softening-stiffening behavior [Fig. 6.1(d)].

6.1.1 Mechanisms

The manifestation of irreversible or plastic strains can be attributed to the
internal changes at the atomic and microlevels. At the atomic level, the bonds
can stretch, causing a recoverable elastic response. Then relative slip can
occur, causing an irrecoverable response (5). In the elastic range, the material
particles, see Fig. 6.2(a), maintain bonding or contact such that upon removal

FIGURE 6.2
Mechanisms at the particle level.
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of the load, the material springs back to its original state. After yield, which
can be considered as a threshold state, the contacts may experience relative
motions  [Fig. 6.2(b)] such as translation along the contact. The measured
macrolevel motions or displacements represent accumulation of motions that
occur at the atomic and microlevels. A part of the accumulated motion (dis-
placement) is not recovered when particles are unloaded. This is similar to
the behavior of two blocks [Fig. 6.2(b)] in which, upon unloading, a part of
the displacement  is not recovered. The motion (displacement) that is not
recovered is referred to as irreversible or plastic.

The cohesive part of the material strength is mainly present in the case of the
elastic-perfectly-plastic materials. The continuing strains occur under con-
stant yield stress, which represents the cohesive strength due to interparticle
attraction and chemical bonds. Both the cohesive and frictional properties are
often present in many materials; hence, after the yield for an elastic-plastic
hardening material [Fig. 6.1(b)], the yield strength can increase with further
loading.

In the case of strain-softening response [Fig. 6.1(c)], some of the interparticle
bonds may experience breakage, resulting in the reduction in the stress the
material can carry.  However, for some materials and loading, after a certain
reduction in stress and self-adjustment of the microstructure, the contacts may
reestablish and rebonding may occur with increasing strains; such a behavior
can be called stiffening or healing; see Fig. 6.1(d). During softening, bond
breakage can occur, and during stiffening rebonding can occur; see Fig. 6.2(c).
Such behavior is considered in Chapter 10.

6.1.2 Theoretical Development

From the above discussion, it is evident that in order to define the behavior
of an elastic-plastic material, it is required to define (a) the state at which
yielding occurs and (b) the behavior after yield so as to evaluate the plastic
deformations during the post-yield region.

6.1.3 Yield Criteria

A yield criterion defines the limit of the elastic regime and is usually expressed
in terms of stresses. In the case of one-dimensional or uniaxial loading, the yield
criterion can be expressed as

(6.1)

where F is the yield function and �y is the uniaxial tensile or compressive
stress at which yielding occurs.  In general, the yield criterion is expressed in
terms of the six components of stress as

(6.2)
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If we assume that the material is isotropic, i.e., its response is independent
of the direction, F can be expressed as

(6.3)

where �1, �2, and �3 are the principal stresses.  Often, the yield function is
expressed in terms of the invariants (J1, J2, J3) of the total stress tensor, �ij,

(6.4a)

Sometimes, it is appropriate to use the invariants, J2D, J3D, of the deviatoric
stress tensor, Sij, as

(6.4b)

where

and

If the yield behavior of the material, like that of some metals and saturated
cohesive soils under undrained conditions, is affected only by the shear
stress, then F is expressed as

(6.5a)

which leads to the well-known von Mises criterion (2, 6, 12)

(6.5b)

where k is the material parameter determined from laboratory tests. Hence,

(6.5c)

For uniaxial tension loading, if the yield stress is �y, then Eq. 6.5(c), gives

(6.5d)
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Therefore,

(6.5e)

In the case of pure shear stress at yield, s, we can derive the following rela-
tion:

(6.5f)

The von Mises criterion (F) plots as a cylinder, with constant radius,
Fig. 6.3(a), in the principal stress space, indicating that the behavior is not
affected by the mean pressure, p � J1�3. The Drucker–Prager (D–P) yield cri-
terion allows for the effect of mean pressure and is given by

(6.6a)

where � and k are material parameters. The D–P criterion plots as a right cone
in the stress space, indicating that the yield response is a function of the mean
pressure, p. For conventional triaxial compression (CTC) loading (�1 � �2 �
�3; Fig. 3.16), and for plane strain idealization, the values of � and k are
related to the angle of friction, 	, and cohesion, c, as (12, 14–16)

CTC

(6.6b)

(6.6c)

Plane strain

(6.6d)

(6.6e)

6.1.4 Mohr–Coulomb Yield Criterion

The Mohr–Coulomb (M–C) yield criterion allows for the effect of friction and
plots as an irregular hexagon in the stress space; see Fig. 6.3(b). One of the
properties of this criterion is that it includes different strengths under different
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paths of stress or loading, e.g., compression (C), extension (E), and simple
shear (S); see Fig. 6.3(c). As a result, it is often considered to be more appropri-
ate for frictional and geologic materials. The yield function according to the
M–C criterion is given by

(6.7a)

FIGURE 6.3
Representation of plasticity models and effect of stress path.
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where 
 is the Lode angle:

(6.7b)

and

(6.7c)

Hence, it includes the effect of the third invariant, J3D, of Sij, which is given
after Eq. (6.4b).

6.1.5 Continuous Yielding or Hardening Models

In the classical plasticity models described above, the process of yielding
depends on the state of stress; however, no consideration is given to the
changing physical state of the material due to internal microstructural trans-
formations. During deformation, the material state changes continuously; for
example, the density, specific volume, or void ratio changes under both
hydrostatic and shear stresses. This can be particularly true in the case of
materials like geologic, concrete, and some ceramics, which exhibit a coupled
response due to shear and hydrostatic loadings. As a consequence, the mate-
rial may exhibit yielding (almost) from the very beginning, e.g., point A0 in
Fig. 6.1(b). That is, every point on the stress–strain response is a yield point,
and the yield stress increases continuously. Continuous yielding may be
attributed to internal microstructural changes due to relative particle
motions such as compaction, sliding, and rotation. The irreversible or plastic
part of these motions plays a significant role in continuous yielding, which
can be expressed in terms of internal variables such as volumetric and devi-
atoric plastic strain trajectories, and plastic work or dissipated energy.

In the context of geologic materials, mention may be made of Hvorslev’s
(17) pioneering work on the behavior of remolded clays, Casagrande’s (18)
idea of critical density or void ratio, the critical-state concept by Roscoe et al.
(19, 20), and the cap models by DiMaggio and Sandler (21). Here, we shall
briefly describe the continuous yielding models based on the critical-state
and cap concepts.

6.1.6 Critical-State Concept

We first describe the basic idea in the critical-state (CS) concept. Irrespective
of the initial density, a (granular) material, under shear stress, passes through
various deformation states and finally approaches the critical state at which its
volume or density or void ratio does not change. In the critical state, the
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material with a given initial mean pressure continues to deform under the
constant shear stress reached up to that state without further change in its
volume (see Chapter 3).

Figure 6.4 shows symbolic stress–strain and volumetric responses under
compressive loading of initially loose and dense materials with given initial
mean pressure, p0 � �0 � J10 �3. In the case of the loose material, the volume
continuously decreases and then approaches the critical state (CS), denoted
by c. The dense material may first compact (decrease in volume) and after an
instantaneous state of constant volume, which represents a threshold transi-
tion, the material dilates, i.e., its volume increases. Finally, it approaches the
same critical state of invariant volume as that for the loose material under the
given p0.

Laboratory testing of normally consolidated cohesive soils under undrained
and drained conditions leads to similar critical-state conditions. This is
depicted in Fig. 6.5(a) and (b) (12). Here it can be seen that shearing under dif-
ferent initial mean pressures [p � (�1 � �3)�2] leads to invariant shear stresses
( � �1 � �3) and void ratios ( ) at the critical state. The locus of such shear

FIGURE 6.4
Behavior of loose and dense granular materials and critical state.
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stresses at the critical state is often found to be a straight line on the q–p plot,
shown in Fig. 6.5, which is called the critical-state line (CSL). The locus of the
void ratios at the critical state on the e–�np plot, in Fig. 6.4(c), is often curved
but is frequently approximated as the line with a slope of 
.

Now, if the two responses q–p and e–p are combined together, in Fig.
6.6(a), they represent curved surfaces in the q–p–e plot. Thus, the behavior
of the material is now not only dependent on the state of stress (q, p), but
also on the physical state represented by void ratio (e) or density (�). As
shown in Fig. 6.6(b), the projection of the curved surface [Fig. 6.6(a)] on the
q–p plot represents yield surfaces that grow continuously and intersect the
CSL such that the tangent to the yield surface is horizontal; this implies that
the change in the volumetric (plastic) strain at the intersection vanishes.
Similarly, if the material is assumed to be isotropic, it will experience only
volumetric strains under hydrostatic loading and hence, the yield surface
would intersect the p-axis at a right angle. In Fig. 6.6(b),  and   denote

FIGURE 6.5
Undrained and drained behavior of granular materials.
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the plastic shear and volumetric strains, respectively, and d denotes incre-
ment. In the earlier development of the critical-state concept (19, 20), the
yield surfaces were considered elliptical.

The foregoing now permits definition of the material behavior under con-
tinuous yielding and at the critical state. It may be noted that in the earlier
work (19, 20), the main emphasis was on the definition of the critical state,
whereas the formulation, use, and implementation of the continuous yield-
ing aspect became evident later, particularly in the context of computational
procedures such as the finite-element method.

FIGURE 6.6
Critical-state representation (12, 19, 20).
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There have been a number of subsequent works involving the formaliza-
tion and use of the critical-state concept for describing behavior of materials
such as overconsolidated clays (22) and rocks (23). However, because a main
objective here is to discuss the hierarchical single-surface (HISS) approach,
which includes the critical-state model as the special case, we present only
brief descriptions of some aspects in the earlier critical-state models.

6.1.7 Yield Surface

The equation of the yield surface, Fy [Fig. 6.6(b)], according to the modified
Cam clay model, is derived as (19, 20)

(6.8)

where M is the slope of the CSL given by

(6.9)

and p0 is the varying value of mean pressure at the intersection of the yield sur-
face with the p-axis, Fig. 6.6(b), during shearing, and denotes the yielding or
hardening as function of the volumetric plastic strain  or void ratio :

(6.10a)

Also, at the critical state:

(6.10b)

or

Here, 
 and � are the slopes of the consolidation (isotropic) loading and
unloading responses, respectively [Fig. 6.4(c)],  is the value of  corre-
sponding to J1 � 3pa, pa is the atmospheric pressure constant, and  is the
void ratio at the critical state.

For the conventional triaxial stress condition  (�1 � �2 � �3), q � �1 � �3 �
 and p � (�1 � 2�3)�3 � J1�3. Substitution in Eq. (6.8) gives the yield

surface in terms of the stress invariants (12) as

(6.11)

where J10 is the value of J1 at the intersection of the yield surface with the J1-axis.
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For the general three-dimensional case:

(6.12a)

(6.12b)

hence, the yield surface is expressed as

(6.13)

where  is the slope of the critical-state line in  – J1 space, and M �
3 ; see Fig. 6.7.

6.1.8 Parameters in the CS Model

If the CS model is used in the context of elastoplastic behavior with isotropic
hardening (the yield surface grows symmetrically with respect to the origin in
the stress space), the following six parameters are required for the basic CS
model:

Elastic: E and � or K and G
Plastic: M, 
, � (for unloading), e0 (initial void ratio)

Details of their determination from laboratory tests are given subsequently.

6.1.9 Cap Model

The basic idea in the cap model is similar to that in the critical-state model. It was
proposed by DiMaggio and Sandler (21) to characterize the behavior of sands.
In this model, Fig. 6.8, two functions are defined, one to characterize continuous

FIGURE 6.7
Critical-state line on  � J1 space.J2D
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yielding, Fy, and the other for the failure behavior, Ff, which is composed of an
initial portion of the Drucker–Prager surface and the ultimate part of the von
Mises criterion, joined smoothly. This implies that in the early stage of loading
when the mean pressure is low, the material behaves as cohesive-frictional, and
at higher mean pressure, it exhibits essentially cohesive response.

The expression for the yield caps, Fy , assumed to be elliptical, is given by

(6.14)

where J10 represents the intersection of the yield surface with the J1-axis [sim-
ilar to p0 in the critical state (Cam clay) model], J1C is the value of J1 at the center

FIGURE 6.8
Representation of cap model in �J1 stress space.J2D
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of the ellipse, and  is the value of  when J1 � J1c. The term J10 repre-
sents hardening or yielding and is expressed in terms of volumetric plastic
strain as

(6.15)

where , W, and Z are material parameters; the latter denotes the size of the
cap due to the initial (stress) conditions.

The expression for the failure surface is given by

(6.16)

where , , and  are the material parameters.
The yield caps intersect the failure surface, as shown in Fig. 6.8. As the load-

ing is applied, along a given stress path (P to Q), the material passes from one
yield surface to the next, and finally, at failure, the surface, Ff, is reached. As at
failure there is no volume change, Fy intersects Ff such that the tangent to Fy is
horizontal. Also, as the material is assumed to be isotropic, Fy intersects the J1-
axis at a right angle. In computational analysis, it becomes necessary to design
special schemes to handle the intersection point (B) while computing plastic
strain increments.

The number of parameters in the elastoplastic cap model is nine, which
includes two elastic (e.g., E and � or K and G), , , and  for the failure sur-
face, and D, W, Z and R � (J10 � J1C)�  for the yield cap (12, 21).

6.1.10 Advantages and Limitations of the CS and Cap Models

Both the critical-state (Cam-clay) and the cap models can provide improved
characterization of materials that exhibit continuous yielding. As a result, a
number of studies have used and implemented these models, often with
modifications, in computer procedures. However, they suffer from the follow-
ing limitations in handling a number of important attributes of the behavior
of materials.

1. In both, the yielding is assumed to depend only on the volumetric
plastic strains. It is found that for many materials, yielding can also
depend on the deviatoric plastic strains. Hence, it is felt that both
should be included in the definition of yielding.

2. The yield surface in both, Eq. (6.11) and Eq. (6.14), plot as circular
in the principal stress space (�1��2, �3); this implies that the
strength of the material is independent of stress path. On the
other hand, many (geologic and other) materials exhibit different
strengths under different paths, e.g., compression, extension, and
simple shear; Fig. 6.3(c).
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3. As can be seen from Figs. 6.6 and 6.8, the plastic strain increment,
, is directed outward to the yield surfaces. If the compressive

volume change is considered to be positive in the positive J1-axis,
this implies that up to the intersection of the yield surface with the
CSL or the failure surface [Figs. 6.6(b) and 6.8(a)], the models would
predict compressive volume change. Then at the intersection, there
will be no volume change. In the case of the CS model, the yield
surface is used in the calculations, then after the critical state is
reached, the volume change will be zero. In the cap model, if Ff is
used, volume change can occur after the failure and can involve
dilation or volume increase as the plastic strain increment will now
be directed in the negative J1-direction. In many materials, it is
found that the dilation may start before the peak or the failure is
reached, point b in Fig. 6.4. Thus, these models cannot allow for
the occurrence of dilation before the peak or failure.

4. Although the issue of strain-softening response has been discussed
in the context of the CS models and subsequent modifications, there
has been no consistent approach available for strain softening, that
allows for the discontinuous nature of the material due to micro-
cracking.

5. Many (frictional) materials exhibit nonassociative response, that is,
the plastic potential function, Q, is different from the yield function,
F. The earlier CS and cap models have been based on associated
plasticity, i.e., .

Comments:  To Hierarchical Single-Surface Models. The foregoing mod-
els are presented for completeness. The hierarchical single-surface (HISS)
plasticity models (Chapter 7) provide a unified approach, which includes
most of the foregoing and other plasticity models as special cases. It elimi-
nates or reduces the above deficiencies and usually requires fewer parame-
ters, compared to those in the previously available models of comparable
capacity. The HISS-�0 model (Chapter 7) is mainly used to characterize the RI
response in the DSC model.

6.2 Incremental Equations

The consistency condition and the normality rule are given by (1–6)

(6.17a)

and

(6.17b)
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where  is the vector of plastic strain increments, Q is the plastic potential
function (  for associative plasticity), and 
 is the scalar proportionality
parameter. Use of Eq. (6.17) leads to the incremental equations as (for details
of derivations, see Chapter 7)

(6.18a)

(6.18b)

where  is the elasticity matrix, and  is the matrix representing the contri-
bution of the plastic response.

6.2.1 Parameters and Determination from Laboratory Tests

Elasticity: For linear elastic and isotropic materials, , Eq. (6.18) is
expressed in terms of elastic moduli such as E, � or G and K. Procedures for
their determination are given in Chapter 5.

Plasticity: For the von Mises criterion, Eq. (6.5), the yield stress, �y, in ten-
sion or compression or cohesive strength, c, are needed. Figure 6.9(a) shows
a uniaxial stress–strain curve from which the yield stress, �y , can be obtained
at the point where plastic action initiates. It represents the point after which
the material will experience plastic strains upon unloading.

For nonfrictional materials, the cohesive strength, c, can be found from the
value of shear stress (�) at peak or failure [Fig. 6.9(b)], which shows the enve-
lope of shear stress, �, vs. normal stress, �. If the material possesses mainly
cohesive strength, the Mohr envelope [Fig. 6.9(b)] will be horizontal with c as
the intercept along the shear stress (�) axis. For the Mohr–Coulomb criterion,
Eq. (6.7a), the values of c and the angle of friction (	) are found from Mohr
diagrams; see Fig. 6.9(b).

For the Drucker–Prager criterion, Eq. (6.6), the values of � and k can be
found from the values of cohesion, c, and friction angle, 	. Alternatively, �
and k can be found from plots of  � J1; see Fig. 6.9(c).

The parameters for the critical-state model (e.g., 
, , e0) can be found by
using the procedure described in Chapter 3.

The parameters for the cap model are , , and  in Eq. (6.16) and , W,
and Z and R(J10) in Eqs. (6.14) and (6.15). The laboratory stress–strain test
results are used to find peak (failure) stress, and plotted as in Fig. 6.10(a).
The intercept of the von Mises envelope at larger values of J1, along ,
gives the values of , and that for the D–P envelope (at J1 � 0) gives the
value of  � . For finding the value of` , we can select a point(s) on the
transition curve; see Fig. 6.10(a). Equation (6.16) can be now written as

(6.19a)
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Therefore,

(6.19b)

For no initial stress (or yielding) Z � 0. The value of  and W can be found
from hydrostatic test data [Fig. 6.10(b)]. With Z � 0, Eq. (6.15) becomes

(6.20a)

FIGURE 6.9
Parameters for different yield criteria.
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where J10 � 3p, p � mean pressure. Therefore,

(6.20b)

and

(6.20c)

(6.20d)

FIGURE 6.10
Parameters for cap model.
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Here, �v is the total volumetric strains, and  is the elastic volumetric strain
given by

(6.20e)

where K is the bulk modulus. Hence,

(6.20f)

Now, we can select pairs of points on the loading part of the p vs. �v curves,
shown in Fig. 6.10(b). Then, substitution of the values of p and �v in Eq. (6.20f)
leads to two equations that are solved for W and . A number of pairs of
points can be used for finding average values of W and D.

The value of R � ( J10 � J1c)/ , Eq. (6.14), is required to define the size
and shape of the yield caps, which can be represented as contours of constant
volumetric plastic strains. If the yield caps are elliptical, R is given by the ratio
of the major to minor axes of the ellipse. For granular materials, the value of
R is often found in the range of 1.67 to 2.0.

6.2.2 Cyclic Loading

In this chapter, we have discussed the characterization only for monotonic
loading, often referred to as virgin loading, in which the applied stress increases
continuously. In Chapter 7, we shall discuss DSC models for cyclic loading.

6.2.3 Thermoplasticity

Behavior of materials can be influenced significantly by temperature and its
variations, often together with mechanical loading. It is possible to incorpo-
rate temperature effects by appropriate modification of the yield function, F.
Details are given in Chapter 7, with respect to the HISS models; the models
presented here can be considered special cases of the HISS models.

6.3 Examples

Example 6.1
Consider a one-dimensional stress–strain response, Fig. 6.11, under uniaxial
stress (�), and the following two yield functions:

(1a)

(1b)
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where �y is the yield stress. Derive specialized incremental plasticity equa-
tions based on Eq. (6.18):

(1c)

Details are given in Chapter 7, Eq. (7.44).
For the one-dimensional case,  � �, � �, and ;  here we have

ignored the effect of other strains. Therefore, from the yield function in
Eq. (1a), we have

(1d)

Hence,

FIGURE 6.11
Uniaxial stress–strain curve.
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which indicates that there is no change in stress during yielding for the per-
fectly plastic model.

For the yield function in Eq. (1b):

(1e)

Therefore,

Again indicating that for the von Mises criterion with the perfectly plastic
model, there is no change in stress during yielding.

Example 6.2
Assume that the RI behavior is simulated as linear elastic with modulus E,
Fig. 6.11. Consider that the observed response during yielding is given by

(2a)

that is, the FA response is assumed to possess strength equal to the yield
stress, �y .

The disturbance, D, can be evaluated [Eq. (3.7a), (Chapter 3)] as

(2b)

In the linear elastic range, before �y,

(2c)
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and after yield

(2d)

Hence, D vs. plastic strain, , is as shown in Fig. 6.12.
The details of the evaluation of the observed stress-strain response are as

follows:
Before �y:

because D � 0 and dD � 0.
After �y:

FIGURE 6.12
Disturbance vs. plastic strain: �

c
�y .�

D �
i

�
i

�

�
i

�y�
------------------ 1� �

�
p

�
a 1 D�( )�

i D�
c

��

1 0�( )�
i 0 �

c
�� �

i
� �

d�
a 1 D�( )d�

i Dd�
c dD �

i
�

c
�( )� ��

1 0�( )d�
i 0 0� � d�

i
� �

�
a 1 1�( )�

i 1 �
c

�� �y� �

d�
a 1 1�( )d�

i 1 d�y 0����

d�y 0� �



© 2001 By CRC Press LLC

because dD � 0 and d�y � 0 as �y is constant. This indicates that there is no
change in stress during yielding. Thus, the DSC model provides, as a special-
ization, the classical perfectly plastic model.

Example 6.3
Consider Example 6.2 and assume that the FA state does not carry any stress;
therefore,  � 0, and  � �y during yielding. Then, the disturbance function,
D, is given by

(3a)

Before �y:

After �y:

The plot of D vs.  is given in Fig. 6.13.

FIGURE 6.13
Disturbance vs. plastic strain: .
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Now the observed stress–strain behavior can be predicted as follows:
Before �y:

After �y:

Now,

Therefore,

Again indicating that there is no change in stress during yielding and with
the assumption that , the DSC leads to the classical perfectly plastic
model.
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Example 6.4
Consider a composite made of two materials, a metal and concrete (ceramic).
Figure 6.14 shows the (measured) behavior of the metal (material 1) as elasto-
plastic, concrete (material 2) as strain softening, and the composite as plastic
hardening. The behavior of materials 1 and 2 is assumed to be simulated by
using the DSC model. In the case of the metal, the RI behavior is simulated as lin-
ear elastic, and the FA stress,  � 59.00 ksi, is assumed; see Fig. 6.15(a). For con-
crete, the RI response is considered as nonlinear (hardening) with  � 6.0 ksi,
Fig. 6.15(b).

The behavior of the metal and that of concrete were first computed by
using the following equations at step k (with d � 0):

(4a)

(4b)

(4c)

(4d)

Now, the observed stresses at various points (k) for the metal and concrete
were used to evaluate the disturbance for the composite as

(4e)

where  is the observed composite stress at point k at a given strain level.
Then the predicted composite behavior was obtained by integrating the

FIGURE 6.14
Behavior of metal, concrete, and composite: 1 psi � 6.89 kPa.
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following equation:

(4f)

where dDk � Dk � Dk�1. Figure 6.16 shows that the predicted behavior of the
composite compares very well with the observed behavior.

Some of the following practice examples may require calculations using
iterative procedures. It may be useful to prepare computer routines for such
iterative procedures. As necessary, appropriate values of parameters such as
E can be adopted.

Example 6.5
Assume that the RI behavior is simulated as bilinear elastic (see Fig. 5.15,
Chapter 5). By assuming that (a)  � � �y and (b)  � 0,  � �y , predict
the observed (elastic perfectly plastic) response.

FIGURE 6.15
DSC responses for metal and concrete: 1 psi � 6.89 kPa.
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Example 6.6
Assume that the RI behavior is simulated by using the hyperbolic relation,
Eq. (2a), Example 5.2. Then predict the elastic perfectly plastic stress–strain
behavior assuming that (a)  � � �y , and (b)  � 0,  � �y.

Example 6.7
Predict the elastic plastic behavior assuming the RI behavior to be elastic (E),
and the Drucker–Prager yield criterion, Eq. (6.6a).
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7.1 Introduction

The hierarchical single-surface (HISS) plasticity models provide a general for-
mulation for the elastoplastic characterization of the material behavior. These
models, which can allow for isotropic and anisotropic hardening, and associ-
ated and nonassociated plasticity characterizations, can be used to represent
material response based on the continuum plasticity theory (1–6). In the case
of the DSC, they can be used to represent the RI response; in many cases, the
basic and simplest version, HISS-�0, that allows for isotropic hardening and
associated response has been used. It may be mentioned that use of plasticity
theory is one of the possible ways to characterize the RI behavior. However,
the DSC can be formulated by simulating the (RI) response as nonlinear with
irreversible deformations, without invoking the theory of plasticity.

We will present comprehensive details of the HISS approach including its
theoretical background, specializations, nature of parameters and their deter-
mination from laboratory tests, details of parameters for typical materials,
derivation of elastoplastic equations, incremental iterative analysis, and val-
idations of the models for a number of materials: geologic, concrete, metals,
alloys, silicon, etc.

It is useful to emphasize one of the important advantages offered by the
hierarchical nature of the HISS model. Most other available models provide
for a specific characteristic of the material behavior. On the other hand, the
HISS (and DSC) approach provides for hierarchical adoption of models of
increasing sophistication, say, linear elastic to nonassociated elastoplastic to
elastoplastic with softening (disturbance). Thus, the user can select the most
appropriate model for a given material in specific engineering application. In
this context, it is shown that the classical such as von Mises, Mohr–Coulomb,
and Drucker–Prager, continuous yielding such as critical-state and capped
(see Chapter 6), and other models such as by Matsuoka and Nakai (7), Lade
and co-workers (8, 9), and Vermeer (10) can be derived as special cases of the
HISS model. It is also indicated that the anisotropic and kinematic versions
of the HISS model can provide alternative characterizations to models pro-
posed by Mroz and co-workers (11–13), Krieg (14), Prevost (15), and Dafalias
and co-workers (16, 17).

7.1.1 Basic HISS Model

Consider the associated plasticity model in the hierarchical single-surface
(HISS) approach. The yield function, F, is given by

(7.1)

F J2D �J1
n

� �J1
2

�( ) 1 �Sr�( )m
� 0� �

J2D FbFs� 0� �
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Here,   � J2D� , where pa is the atmospheric pressure constant;  � (J1 �
3R)�pa, where R � the bonding stress (e.g., tensile strength under compressive
loading and compressive strength under tensile loading); n � phase change
parameter where the volume change transits from compaction to dilation or
vanishes; m � �0.5 is often used; � � parameter related to the (ultimate) yield
surface, � is related to the shape of F in the 	1–	2–	3 space, Sr � stress ratio �


  and � is the growth or hardening parameter, which can be
expressed in terms of internal variables such as plastic strain trajectory or accu-
mulated plastic strains, and plastic work or dissipated energy. Based on the
development of the hardening function for a wide range of “solid” materials,
interfaces and joints, it was found that use of the plastic strain trajectory pro-
vides a more consistent formulation than that by plastic work. Moreover, it is
relatively easier to compute the plastic strain trajectory from available test data.
Hence, the plastic strain trajectory is commonly used in this text.

A simple form of � is given by

(7.2)

where  is the trajectory of plastic strains,  d denotes
increment, � is composed of deviatoric (�D) and volumetric (�v) plastic strain
trajectories:

(7.3)

Here,  is the deviatoric plastic strains tensor = , and
� volumetric plastic strain. Figure 7.1(a), (b), and (c) show schemat-

ics of F � 0 in  , octahedral plane, and 	1–	2–	3 stress spaces. The
expanding yield surfaces are continuous and approach the final or ultimate
yield surface when � � 0. The points on the yield surfaces with horizontal
tangents denote zero volume change or critical-state line (Chapter 6).

In the case of nonassociated plasticity, the plastic potential function, Q, is
expressed as (1, 3, 5, 18–20)

(7.4)

where h � correction function, which is introduced, for simplicity, through
the hardening function as

(7.5)

where �0 � value of � at the end of initial (hydrostatic) loading, and � is the
nonassociative parameter, and rv � �v/�.

J2D pa
2 J1

27�2( ) J3D �J2D
3� 2( ),

�
a1

�
n1

------�

� � d
 ij
p d
ij

p( )1� 2
� 
ij

p,

� �D �v� dEij
p dEij

p

( )1� 2 1

3
------- 
 ii

p
��� �

Eij
p


ij
p 1�3( )
ii�ij�


ii
p


v
p

�
J2D J1�

Q F h Ji, �( )��

�Q � � �0 ��( ) 1 rv�( )��



© 2001 By CRC Press LLC

FIGURE 7.1 
Plots of F in different stress spaces (1–3).
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7.2 Specializations of the HISS Model

Before presenting derivations of the incremental constitutive equations, we
discuss various specializations of the HISS model.

7.2.1 Classical Plasticity Models

The parameter � in Eq. (7.1) defines the shape of the yield surface, F, in the
principal stress space, Fig. 7.1(b). In the context of the theory of plasticity in
which it is required that F be convex, the value of � is limited by � � 0.76 (see
Example 7.1). If it is assumed that (� � 0) and n � 2, Eq. (7.1) becomes (here,
the overbar is deleted for convenience)

(7.6)

where 3R is the intercept along the J1-axis denoting tensile or compressive
bonding stress; see Fig. 7.1(a).

Equation (7.6) can represent various classical plasticity models such as von
Mises, Tresca, Drucker–Prager, and Mohr–Coulomb if there is no continuous
yielding involved before the failure (ultimate) yield envelope is reached.
Hence, as � � 0 at the ultimate condition, we have

(7.7a)

Now, 3R in Fig. 7.1(a) can be expressed approximately as

(7.7b)

where  is the intercept along the -axis at J1 � 0 and is related to the cohe-
sive (or tensile) strength of the material. Substitution of 3R in Eq. (7.7a) leads to

(7.7c)

If the effect of  is ignored, Eq. (7.7c) reduces to

(7.7d)

which has the same form as the Drucker–Prager yield criterion, Eq. (6.6a) of
Chapter 6. Now, if the effect of J1 is ignored, Eq. (7.7d) becomes

(7.7e)

which has the same form as the von Mises criterion, Eq. (6.5b) of Chapter 6.

F J2D � J1 3R�( )2
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If we assume that the material (soil) is normally consolidated or cohesion-
less and 3R � 0, Eq. (7.6) becomes

(7.8)

which has the form similar to the modified Cam Clay model in the critical
state soil mechanics, Eq. (6.11) of Chapter 6. In the Cam Clay model, p0

denotes the hardening parameter, which is dependent on the volumetric
plastic strain or void ratio. In the HISS model, the hardening function, �, can
depend on the total plastic strain trajectory �, Eq. (7.2), which includes both
the volumetric and deviatoric plastic strains, thereby providing a generaliza-
tion of the continuous yielding or hardening process.

In the cap model, failure and continuous yield surfaces are defined (see
Chapter 6). In the HISS model, at the ultimate, � � 0, and we have Eq. (7.7d),
which is analogous to the failure surface, Ff [Eq. (6.16), Chapter 6] in the cap
model. Also, Eq. (7.6) is analogous to the continuous yield surface, Fy , in
Eq. (6.14) of Chapter 6.

Matsuoka and Nakai (7) proposed the following (yield) criterion (for cohe-
sionless materials) as expanding open surfaces (Fig. 7.2):

(7.9a)

and Lade and co-workers (8, 9), proposed the following similar criterion (Fig.
7.2):

(7.9b)

Both above criteria can be expressed as special cases of the F [Eq. (7.1)] in the
HISS model. Subsequently, Lade and co-workers (9) modified their criterion
to include closed and continuous yield surfaces, similar to the closed contin-
uous yield surfaces in the HISS model (21, 22).

The model proposed by Vermeer (10) introduces the effect of both shear
and plastic strains on the hardening response. The total strain increment (or
rate), d
, is expressed as

(7.9c)

where  and  are the incremental plastic strains due to shear and iso-
tropic compression, respectively. It uses the criterion by Matusuoka and Nakai
(7), Eq. (7.9a), to define the yield function relevant to plastic shear strains as

(7.9d)

where the hardening function, , is dependent on the plastic shear strain 
mobilized angle of friction (�m), peak friction angle (at failure) �p, and shear
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modulus G0 at isotropic stress (J10 �3). A plastic potential function is defined
to introduce the effect of volume dilitancy. A specific yield function is defined
for volumetric response as

(7.9e)

where  and  are material constants,  is another hardening function for
volumetric response. The model can involve two (or more) constants to
define elastic response, and five for the plastic response for cohesionless
materials. For cohesive materials, the number of constants will be higher.
Although this model involves effects of both the volumetric and deviatoric
plastic strains on the hardening or yielding behavior, it is felt that their sepa-
ration may not be necessary. The HISS models unify them and also allow the
flexibility of using one or both terms in Eq. (7.3). 

FIGURE 7.2
Plots of open yield and failure surfaces in Lade et al. (8). ©1975, with permission from Elsevier
Science.
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Table 7.1(a)to (c)shows outlines of various models and their chronological
development and comparison of HISS models with other models. It can be
seen from the descriptions herein that the HISS models provide improved
characterization with an equal or fewer number of parameters for compara-
ble capabilities of other available models.

7.3 HISS Versions

The basic �0 version of the HISS approach is based on associative plasticity.
Various hierarchical models for the inclusion of additional factors have been
developed: nonassociative �1-model (19, 20), kinematic and anisotropic hard-
ening �2-models for sands and clays (26–28), and viscoplastic �vp (29–31). It is
found that the basic �0-model is usually sufficient to characterize the RI
response of many materials. With the disturbance, D, in the DSC, and the RI
response modelled using the �0-model, the nonassociative and anisotropic
behavior are accounted for, to some extent. This is because the disturbance,
D, causes the deviation from normality of the plastic strains with respect to F
(32). Hence, the major attention here is given to the �0-model.

7.4 Material Parameters

The elasticity parameters E, , G, and K are determined from laboratory
stress–strain and volumetric behavior, as described in Chapter 5. Their values
will depend on the measured response under a given stress path; see Fig. 7.3(c).
For example, E and � can be found from different stress paths as follows:
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TABLE 7.1(a) 

Review of Various Models (From Ref. 21, with permission from Elsevier Science)

Model
Yield function, F

Potential function, Q
Number of Constants 

and Comments 

1. Classical plasticity 
(see Chapter 6)

F � (J1, J2D, c, �) � 0
Q � F

Constants: 3 or 4
One failure surface defines
plastic behavior.

2. Critical state (23; see also 
Chapter 6)

Fy � Fy[J1(or p),
J2D(or q), �,
�, M, e0] � 0

Fc � Ff [J1(or p),
J2D(or q), M] � 0

Q � F

Constants:  6
Fy (below Fc) defines
continuous yielding, and Fc

defines critical or failure 
state.

Later modifications consider 
nonassociative behavior. 

3. Cap models 
(see Chapter 6)

Fy � Fy[J1, J2D, R, D,
 W, Z] � 0

Fc � Ff[J1, J2D, ,
, ) � 0

Q � F

Constant: 9
Fy (below Ff) defines

continuous yielding, and Ff

defines failure surface.

4. Matsuoka and Nakai (7) F is open failure surface.

5. Lade (8) Constants:  13
F gives open (failure) surface.

6. Desai (HISS) (1–6) Constants:  7 to 8 for �0

8 to 9 for �1

Single surface F for continuous 
yielding and ultimate, 
including failure, peak, and 
critical state.

7. Schreyer (24) Constants: 10
Single surface F defines
continuous yielding 
approaching the failure or 
stationary state.

8.  Kim and Lade (9) Constants: 11
Single surface F defines
continuous yielding. Failure 
is defined by a separate 
function.
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The parameters in the HISS �0-model are � and � associated with the ulti-
mate yield envelope [Figs. 7-1(a) and (b)], n associated with the transition (or
phase change) from contractive to dilative or zero volume change, and � the
hardening or growth function, which is expressed as a function of the plastic
strain trajectory, �, Eq. (7.3), which is composed of the deviatoric plastic strain
trajectory, �D, and volumetric plastic strain trajectory �V, given by

(7.10a)

TABLE 7.1(b)

Comparison of �0 and Cap (Critical-State) and Lade Models

Model  �0  Cap Model

Number of functions 
for the yield surface

1 2

Number of constants 5 � 2 (linear elastic constants) 7 � 2 (linear elastic)
�2 (nonlinear elastic)

Capabilities
Hardening Total plastic strains Volumetric plastic strains
Shear dilation Before peak stress At the peak stress only
Different strength in 
different stress paths

Yes No

Modifications for 
added features

Systematic hierarchical 
additions

No systematic hierarchical 
method available 

Comparison with Lade’s Model
Lade and co-workers’ model with nonassociative plasticity model involved about 13
constants. Recently they modified their model by incorporating single continuous sur-
faces as in the HISS models; with the modification, the number of constants is 11 (9).

TABLE 7.1(c)

Comparison of Models for Cyclic Behavior of Clays

Model
HISS-�2

(26)
Bounding Surface 

Model (16, 17)
Mroz, Prevost’s Model 

(12, 13, 15, 25)

Number of functions for the 
yield surface

1  3 Multiple moving surfaces 
with similar shape

Number of constants 9 19 5 � 10 � m where m is the 
number of yield surfaces.
For the example 
presented, the number 
of constants is 95.

Induced anisotropy Yes No Yes
Prediction of behavior of 
NC soil

Yes Yes Yes 

Predicting shear-induced 
volumetric changes in 
drained tests or shear-
induced pore pressures in 
undrained test for OC clay

Yes Yes Yes

�D dEij
p dEij

p( )1� 2��
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and

(7.10b)

The hardening function can be expressed in different forms, e.g.,

(7.11a)

(7.11b)

(7.11c)

where a1, �1, hi (i � 1,…,4) and (i � 1,…,4) are material parameters.
� and �. The ultimate yield envelope, which can often be curved, but may

be approximated as an average straight line, represents the locus of stress states
asymptotic to the observed stress–strain response, Fig. 7.3(a); Fig. 7.3(b) shows
such points plotted on  stress space. Note that the ultimate yield
envelope can be different for different stress paths, e.g., compression, exten-
sions, and simple shear, Fig. 7.3(c); details of stress paths are given later. One
of the attributes of the ultimate yield envelope in the HISS model is that it
defines the asymptotic stress state. As a result, the traditional failure or peak
stress states are included as special cases; they are below the ultimate or may
coincide with it. There exists a yield surface below (or at the ultimate) corre-
sponding to the failure or peak stress.

In the case of nonfrictional materials like metals and alloys (solders), the effect
of mean pressure and stress path may not be significant. In that case, the ultimate
envelope will be essentially horizontal, and the intercept along   the -axis at
J1 � 0 will represent the cohesive or tensile strength of the material. If the behav-
ior is affected by the mean pressure to a small extent, it can be appropriate to
assign a small value to the slope (�) of the ultimate yield envelope.

As indicated in Fig. 7.1(a), the yield surfaces grow with continuous hard-
ening, and finally they approach the ultimate yield or envelope. According to
the definition of �, Eq. (7.11), at the ultimate � � 0. Therefore, Eq. (7.1) gives
Fu at ultimate as (here the overbar is deleted for convenience)

(7.12a)

Depending on the variation of �, the plot of the ultimate yield surface will be
as shown in Fig. 7.1(b), triangular with rounded corners. When � � 0, the
yield surface will be circular like in the Drucker–Prager criterion.
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The values of � and � are found by substituting values of  for var-
ious points on the ultimate envelopes, Fig. 7.3(b). If the material behavior is
dependent on the stress path, it is appropriate to include points from tests
under different stress paths tests such as compression, extension, and simple
shear. Then Eq. (7.12a) yields a number of simultaneous equations in � and
�, which are solved by using a least-square or an optimization procedure;
these are described in Appendix II. It is found that the value of � � 0.76 to
ensure that the yield surface is convex when the theory of plasticity is
employed; Fig. 7.1(b) shows that for � � 0.77, the yield surface is concave.

7.4.1 Curved Ultimate Envelope

For some materials, the ultimate envelope will be curved or nonlinear. To
account for a curved envelope, Eq. (7.12a) can be expressed as

(7.12b)

where q is a material parameter that can be found by using a least-square or
optimization procedure.

FIGURE 7.3
Parameters � and � in HISS model.

J2D, J1( )

Fu J2D � J1
q

1 �Sr�( ) 0.5�
� 0� �
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7.4.2 Relation Between Ultimate Parameters, Cohesion,
and Angle of Friction

If the failure envelope in the Mohr–Coulomb criterion is assumed to be the
ultimate envelope, parameters � and � can be related to the traditional angle
of friction, �, from the shear stress, �, vs. normal stress, 	, plots; see Fig 7.4.

FIGURE 7.4
Ultimate envelopes in different stress spaces.
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The relations are given below (see Example 7.1 for derivations):

(7.13a)

(7.13b)

as Sr � 1 for compression (CTC) and Sr � �1 for extension (RTE) paths.
Therefore,

(7.13c)

and

(7.13d)

Note that  refers to the simple shear (SS) stress path, Fig. 7.3(b) and (c),
when Sr � 0. In the foregoing equations �C, �S, and �E are the slopes of the
compression, simple shear, and extension envelopes in the �–	 stress space,
and θC, θS, and θE are the corresponding slopes in the –J1 stress space,
Fig. 7.4(a).

FIGURE 7.4
(continued)
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If � is constant, the ultimate envelope is a straight line. For some materials,
the ultimate envelope is curved, and then � can be expressed as a function of
mean pressure (J1�3) as (33–36)

(7.14)

or

(7.15a)

or

(7.15b)

where �0 and �1 are parameters, and  is the reference value. Thus, in this
case, it is necessary to consider additional parameters in Eq. (7.14), which can
be found by using least-square fit procedures on plots of the ultimate enve-
lope as a function of J1 (33, 36).

7.4.3 Bonding Stress, R

The bonding stress, R, is introduced by transforming the stress tensor as

(7.16)

where �ij is the Kronecker delta. In Fig. 7.1(a), 3R denotes the distance from
the intersection of the ultimate yield surface with the J1-axis to the origin. In
the case of geologic materials, where compressive behavior may be of the pri-
mary interest, R is related to the tensile strength of the material. In the case of
metals, where tensile behavior may be of the main interest, R is related to the
compressive strength.

The values of R can be obtained by assuming the ultimate envelope to be a
straight line, from

(7.17)

where  is the slope of the ultimate envelope and  is proportional to the
cohesive strength of the material.
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The uniaxial tensile strength, ft (say for a concrete), can be used to evaluate
R. As indicated in Fig. 7.4(c), the value of R is slightly greater than ft (33, 34,
37):

(7.18)

For rocks, ft can be evaluated from the following empirical expression (38, 35,
36), Fig. 7.4(d):

(7.19)

where fc is the uniaxial compressive strength, s � 1.0 for intact rock, and m� is
found from compression test results, which varies from about 0.001 for
highly disturbed rock masses to about 25 for hard, intact rock (38).

In the case of metals and metallic materials like solders, tensile behavior
may be relevant and the bonding stress, R, will represent (high) compressive
strength, as the ultimate yield envelope is essentially horizontal in the 
– J1 stress space; i.e.,  is small. For uniaxial tensile behavior, axial stress 	1

is applied, for which J1 � 	1 � 0 � 0 � 	1 and   At the ulti-
mate yield condition [Fig. 7.1(a)]:

(7.20a)

(7.20b)

from which the value of � can be estimated. For example, we can assign a
small value of about 95% of  at J1 � 0 and compute the slope  , Fig
7.1(a) (39, 40).

7.4.4 Phase or State Change Parameter

The phase change (PC) parameter, n, is related to the state of stress at which
the material passes through the state of zero volume change. In the case of
metallic materials that can be characterized as elastic perfectly plastic, the
onset of the yield stress can represent the state of zero volume change, Fig. 7.5(a).

In the case of plastic hardening materials, such a state may occur during
the hardening process, Fig. 7.5(b). For initially loose granular materials, it is
approached at higher deformations, Fig. 7.5(b). For initially dense materi-
als, the state often is reached somewhere before the peak stress [point b, Fig.
7.5(b)], at which the material experiences transition from compactive to
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FIGURE 7.5 
Stress-strain response and phase change or volume transition.
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dilative (volume increase) behavior. In the ultimate region, the state of zero
volume change is approached in the residual stress (critical-state) condition.
The zero plastic volume change would occur when the volumetric plastic
strain increment vanishes, Fig. 7.5(c), that is, when   0. Based on Eq.
(7.1), this leads to the expression for n as (1–6)

(7.21)

where the stresses are relevant to the point (from test data) where the volume
change is zero; Fig. 7.5(b) and (c). Details are given in Example 7.1.

The value of n can also be found from hydrostatic tests by using the follow-
ing equation (4, 28, 41):

(7.22)

where dJ1 and d
v are the increments in the J1 vs. 
v response, Fig. 7.5(d).
The value of n should be greater than 2.0 for a convex yield surface and

may depend on such factors as initial density; however, as a simplification,
an average value of n can be used. For dense granular materials like sands, n
may be around 3.0, while for loose granular materials and other materials
such as rock and concrete, it would be higher, often of the order of 6 to 10.

For metallic materials and cohesive (saturated) soils, a value somewhat
higher than 2, of the order of 2.05 to 2.40, is often found to be appropriate;
such a value would imply a (nearly) elliptical yield surface. The following
procedure may be used to evaluate n for cohesive materials. For these mate-
rials, “failure” may occur long before the load along a stress path reaches the

FIGURE 7.5
(continued)
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ultimate envelope, Fig. 7.1(a). In other words, failure may occur when the
phase change or the critical-state line, Fig. 7.5(e), is approached. Then the
value of n is found from (28, 41)

(7.23a)

where J1m is the maximum value of J1 for a yield surface, and J1a is at the inter-
section (A) of the phase change line and the yield surface. The value of J1m is
found from the effective consolidation pressure (p�) as

(7.23b)

The value of n can also be found from the slopes of the phase change line,
�t, and the ultimate line (�) as

(7.24)

Details are given in Example 7.2.

7.4.5 Hardening or Growth Parameters

These parameters, e.g., a1 and �1 for � in (Eq. 7.11a), are found from labora-
tory stress–strain tests plotted, for example, in terms of principal stresses, 	i

(i � 1, 2, 3), vs. principal strains 
i (i � 1, 2, 3); see Fig. 7.6(a). This implies that
the test specimen is subjected to the principal stresses with no (applied) shear
stresses. If the results are available from pure shear tests, then the plots in
terms of shear stress � and shear stress � can be used; see Fig. 7.6(b). The main
quantity needed here is the plastic strain trajectory given by

(7.25a)

or

(7.25b)

The increments of plastic strains , ,  or  are found from
stress–strain curves, Fig. 7.6(a) or (b), based on the knowledge of the unload-
ing modulus (Eu) or (Gu). Then, the increment of the trajectory d� is computed
for each stress increment and the total value � is found as

(7.26)
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FIGURE 7.6
Hardening or growth parameters, a1 and �1.
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where i is the increment and �0 is the initial value of � before the (shear) test.
The latter denotes the plastic strains due to initial conditions such as initial
stresses or strains (due to hydrostatic loading), microcracking, and defects. If
the material has no such prior history, �0 � 0.

Now Eq. (7.11a) is expressed as

(7.27)

The value of the hardening function, �, for the state of stress corresponding
to the total stress after the stress increment, i, is found using Eq. (7.1), i.e., F � 0.
Thus, values of ln� and ln� are found at various points along the stress-strain
curves and are plotted as shown in Fig. 7.6(c). If the points are not widely
scattered, an average straight line is drawn through the points. The slope of
the line gives �1, which denotes the rate of hardening. The intercept along
ln�, when ln(�) � 0, i.e., � � 1, gives the value of a1. For some materials, the
values of a1 and �1 may depend on factors such as initial density, stress path,
and temperature. In that case, additional constants are needed to define a1

and �1. The values of parameters in other forms of �, Eq. (7.11), can be
obtained similarly from laboratory test data (4–6, 19, 41).

7.4.6 Nonassociative �1-Model

The parameter � in Eq. (7.5) allows for the correction (deviation from normality)
with respect to the �0-model; see Fig. 7.7(a). If it is assumed that the correction
is affected significantly by the volume change behavior, this parameter is
obtained from the volumetric response, Fig. 7.7(b). In general, � can vary with
strain; however, as a simplification, it is assumed to be constant, related to the
slope, Su, of the volumetric response near the ultimate region, Fig. 7.7(b).

FIGURE 7.6
(continued)
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Then � is found from (4–6, 19, 20)

(7.28)

where Y and Z are related to the state of stress in the ultimate region and Su.
The foregoing (eight) parameters (E, ν; �, �; n; a1, �1, and R) are required to

define the associative (isotropic hardening) �0-version in the HISS model. The
�0-version can be used to characterize the behavior of material in the RI state
in the DSC.

The introduction of the disturbance function, D, in the DSC, allows for the
deviation from normality of the observed strain increment,  .  In other
words, the plastic strain increment  from the �0-model is normal to F,
while  is not normal to F and shows deviation, �, from normality; Fig.
7.7(a) (32). Such deviation can allow for the response as affected by frictional
characteristics, similar to that given by nonassociative plasticity models (19).
Also, such deviation can represent a measure of induced anisotropy (26). As
a result, when the DSC model is used, it may not be necessary to employ the
classical nonassociative and anisotropic hardening models.

FIGURE 7.7
Nonassociative response with DSC and parameter, �.
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As the �0-model is mainly used (sometimes �1 is used) to represent the RI
response, details of the other versions, e.g., the anisotropic hardening (�2), are
not given here. They are available in various publications (3–6, 26–28).

Computer Program. A computer program has been developed to evalu-
ate the foregoing parameters based on given sets of laboratory test data. It is
described in Appendix II. Table 7.2 shows a summary of parameters for various
HISS models including hierarchical addition of constants to allow for factors
for increasing capabilities.

7.4.7 Thermal Effects on Parameters

As discussed in Chapters 5 and 6, the thermal effects can be included in the
plasticity (HISS) models by expressing the parameters in terms of tempera-
ture. A simple expression is often used (39, 40):  

(7.29)

where p is any parameter, pr  is its value at response temperature Tr (say,
300K), T is temperature, and c is a parameter.  The values of pr  and c are found
from laboratory  stress–strain–volume change data at different temperatures.
The procedure for finding the elastic parameters as a function of temperature
is given in Chapter 5 [Eq. (5.37)].

The procedures for finding the parameters �, �, a1, �1, n, and R in the �0-
model from data at a given temperature are described earlier in this chapter.
Their variation vs. temperature leads to functions such as that in Eq. (7.29).
Example of such variations for solder (60Sn/40Pb) are given below (39, 40);

TABLE 7.2

Parameters in HISS Models

Model
Constants for 

�0-Model
Additional Constants 

Beyond �0-Model Total

�0-Associative� 7 to 8 — 7 to 8
�0-Nonassociative 7 to 8 1 8 to 9
�0�vp-Viscoplastic 7 to 8 2 9 to 11
�0�D-Disturbance 7 to 8 3 10 to 12
�2-Anisotropic (sands) 

cyclic loading
7 4 11 to 12

�0
�  (clays) 
cyclic loading 8 2 10

Fluid pressure, p 7 to 8 2 9 to 10
Temperature (T) 7 to 8 m 7 to 8 � m (depends 

on how many 
parameters are 
functions of T)

�For granular materials, R � 0; hence constants � 7.

p pr
T
Tr
----- 

  c

�
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they are derived from uniaxial tension tests under two strain rates,  �
0.0002 and 0.002/sec (42); see Fig. 7.8.

Strain Rate  � 0.0002: 

(7.30a)

(7.30b)

Strain Rate � 0.002:

(7.31)

The value of � � 0 implies essentially a circular yield surface in the 	1 – 	2 – 	3

space, and n � 2.1 is assumed for both strain rates. Variations for elastic
parameters for the same solder are presented in Chapter 5.

7.4.8 Rate Effects

The responses of some materials are affected by the rate of loading. In the
context of the laboratory behavior, the rate effect is often defined through the
strain rate, . The rate effect can be included in the HISS (and DSC) models
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by expressing the parameters as functions of the rate. For example, for both
the thermal and rate effects, any parameter p can be expressed as

(7.32)

The parameters for appropriate functions in Eq. (7.32) can be determined
from laboratory tests under different T and . Strain rate effect is discussed
later in Chapter 8.

FIGURE 7.8
Uniaxial tension stress–strain curves of 60% Sn–40% PB solders: (a) strain rate � 0.0002/sec,
(b) strain rate � 0.002/sec (42). ©1990, IEEE. With permission.
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7.5 Repetitive Loading

Under repetitive loading, Fig. 7.9(a), the applied load amplitude is increased
(to P0) and decreased to zero, and then increased to P0 after a lapse of time,
�t. If we ignore, for the time being, the effect of time, we can consider that the
load is applied as above repeatedly at different cycles, N, and the behavior of
the material may be assumed to be independent of time.

Under the application of the external load, P0 , a material element would
undergo loading–unloading–reloading cycles as depicted in Fig. 7.9(b). Here,
upon removal of the load, P0, the state of stress in a material element, may not
return to zero. In other words, at the end of unloading in a given cycle, the
material may retain a residual or initial stress, , Fig. 7.9(b).

FIGURE 7.9
Repetitive load and stress conditions.

	
˜ r N( )
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Figure 7.9(c) depicts the situation with respect to yield surfaces in the
J1–  space. Loading from 0 to A starts from the initial state  , and at
the end of the loading, the state will be . Upon unloading, (A–B),
during which plastic-strain change may occur, the state will be  . Then
reloading to P0 (B–C) will start from the residual or initial state  ; in
general, the residual state will be , where N is the cycle num-
ber. Thus, the application of full load P0 will start from the residual condition,
which can be considered as the initial state for the current cycle, and will
result in the modified matrix,  , corresponding to the residual state. Hence,
repetitive loading will lead to continuously increasing plastic strains as the
cycles increase. However, the rate of increase in plastic strains may decrease
with cycles.

The foregoing approach can be used to simulate behavior of materials
(metals, geologic, asphalt, etc.) under repetitive loading. When implemented
in a computer (finite-element) method, the procedure would allow calcula-
tion of displacements, stresses, strain, and pore water pressures under repet-
itive loading (see Chapter 13). Examples of materials such as asphalt and
soils, with simplified procedures for computing plastic or permanent strains
(deformations), are given later.

7.5.1 Dynamic Loading

Implementation of the HISS and DSC models for dynamic (earthquake) anal-
ysis is given in Chapter 13. Here, the loading and the stress–strain behavior
can involve both positive and negative values of loads and stresses, which is
often referred to as two-way loading; see Fig. 7.10.

7.6 The Derivation of Elastoplastic Equations

The total (incremental) strain, , is decomposed and expressed in matrix
notation as

(7.33)

where   � elastic strain vector, and   � plastic strain vector.
The incremental elastic strain,  , is related to the increment stresses,  ,

as

(7.34)
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Here, the elastic constitutive matrix,  , for isotropic material is expressed
in terms of the elastic modulus, E, and Poisson’s ratio, �, or the shear modu-
lus, G, and the bulk modulus, K. Often, these parameters are assumed to be
constant for all increments during the incremental analysis. However, they
can be considered as variable and expressed as tangent quantities:

(7.35)

or

(7.36)

where the subscript t denotes tangent quantity, which can be found as the
derivative (slope) of the function used. The latter can be such mathematical
functions as hyperbola, parabola, splines, and exponential (43).

FIGURE 7.10
Dynamic loading.
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Now, from the theory of plasticity, we can use the normality rule (44, 45)

(7.37)

and the consistency condition as

(7.38)

where   � vector of incremental plastic strains, and � is a scalar (positive)
proportionality parameter.

Equation (7.38) gives

(7.39)

The term d� is given by

(7.40)

Therefore, Eq. (7.39) leads to

(7.41)

Substitution for  from Eq. (7.34) gives

(7.42a)

and substitution for   from Eq. (7.33) leads to

(7.42b)
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which, with  from Eq. (7.37), gives

(7.42c)

Hence,

(7.42d)

which leads to the expression for � as

(7.43)

Now, use of Eq. (7.37) with � and substitution in Eq. (7.34) gives

(7.44a)

(7.44b)

or

(7.44c)

(7.44d)

Here,  is called the elasto-plastic constitutive matrix.
Note that for associative plasticity, Q � F will be substituted in Eq. (7.44), and

that Eq. (7.44) can be used for any F and Q, including those from Chapter 6 and
Eqs. (7.1) and (7.4).

d

˜

p

�F
�	

˜

------- 
 

T

C
˜

ed

˜
 � 

�F
�	

˜

------- 
 

T

C
˜

e
�


�Q
�	

˜

-------- �F
��
------� � �F
 
 0�

�F
�	

˜

------- 
 

T

C
˜

e d

˜

� �F
�	

˜

------- 
 

T

C
˜

e �Q
�	

˜

-------- �F
��

˜

------ �F
�
�
 
 0�

�

�F
�	

˜

------- 
  T

C
˜

e d

˜




�F
�	

˜

-------
 
  T

C
˜

e �Q
�	

˜

-------- �F
��

˜

------ �F
�


-------------------------------------------------------�

d	
˜

C
˜

e d

˜

d

˜

p
�( )�

C
˜

e
C
˜

e �Q
�	

˜

-------- �F
�	

˜

------- 
  T

C
˜

e

�F
�	

˜

------- 
  T

C
˜

e �Q
�	

˜

-------- �F
��
------ �F
�


------------------------------------------------------� d

˜

�

d	
˜

C
˜

e C
˜

p
�( )d


˜
�

d	
˜

C
˜

ep d

˜


�

C
˜

ep



© 2001 By CRC Press LLC

7.6.1 Details of Derivatives

We now give details of the derivatives involved in Eq. (7.44). The quantities
 and  will be used as J1 and J2D (without overbars) with the understand-

ing that they are nondimensionalized with respect to pa; hence, although not
shown in the following derivations, pa will occur in the denominator.

From the chain rule of differentiation, we have from Eq. (7.1)

(7.45a)

where

(7.46a)

and

(7.47b)

(7.47a)

Here

(7.47b)

where Sij is the deviatoric stress tensor:

(7.47c)

(7.48a)

and

(7.48b)

where Tij � Sik 
 Skj.
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The above expressions can be written in the matrix notation, e.g., Eq.
(7.47b), as

(7.47c)

where   = [S1 S2 S3 S4 S5 S6] � [S11 S22 S33 2S12 2S23 2S31] denote the components
of the deviatoric stresses, and Eq. (7.48b)

(7.48c)

where   � [T1 T2 T3 T4 T5 T6] � [T11 T22 T33 2T12 2T23 2T31].
The expressions for   and  can be calculated

similarly. The main difference will be in the expression of �, i.e.,

For the �0-msodel:

(7.49a)

For the �1-model:

(7.49b)

where �Q is given in Eq. (7.5).

7.7 Incremental Iterative Analysis

The verification of a constitutive model constitutes an important phase
toward reliable use of the model for practical application. Such verification is
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the parameters; and (2) implementation of the model in solution (computer
finite-element) procedures and then prediction of the behavior of practical
(field) boundary-value problems and�or those simulated in the laboratory. In
this chapter, we present details of the implementation of the HISS model in
computational procedures, and validations with respect to laboratory behav-
ior of a number of materials. Validations with respect to (field) boundary-
value problems are given in Chapter 13.

In dealing with nonlinear material behavior, e.g., elastoplastic characteriza-
tion, it is usually necessary to perform incremental analysis, very often
accompanied by iterations so as to ensure convergence to equilibrium states.
The finite-element incremental equations in the displacement-based approach
are derived as (46)

(7.50)

where  � tangent stiffness matrix,  � vector of nodal displacements,  �
vector of nodal-applied loads, d denotes increment, and i denotes incremental
stage of loading. Here, the total load  is divided into (small) increments �

; see Fig. 7.11(a); the number of increments, N, is chosen by the analyst,
depending on the properties of the problems on hand and experience. The
stiffness matrix  is given by

(7.51)

where V is the volume (of finite element) and  is the strain-displacement
transformation matrix in (46, 47)

(7.52)

� vector of strain components. Note that in Eq. (7.51) the elastoplastic con-
stitutive matrix is evaluated at the start of the current increment (i) or at the
end of the previous increment (i � 1); Fig. 7.11(b).

The assembled equations are solved for incremental displacements at all
node points, which provides the incremental element strains from Eq. (7.52).
Then the incremental stress,   is evaluated from

(7.53a)

and the total stress after the increment is given as

(7.53b)
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FIGURE 7.11
Incremental loading and drift correction.
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Now, if (by chance) the stress, , and the corresponding hardening func-
tion, �i, after the stress increment, , satisfy the yield function, F, at point B
[Fig. 7.11(c)], then

(7.54)

Here,   �  and �B � hardening function at B (see below). However, such an
occurrence is rare, and usually Eq. (7.54) will not be satisfied. The “correct” yield sur-
face F, shown by the dashed curve in Fig. 7.11(c), will, therefore, be different from  ;
the difference between them is often referred to as the drift. Hence, it becomes neces-
sary to correct for the drift so as to obtain F ≈ 0. This process is called drift correction.

FIGURE 7.11
(continued)
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7.7.1 Possible Stress States

The above case, i.e., when point A is exactly on the previous yield surface at
(i � 1), may not occur for all Gauss points (elements). In other words, at (i � 1)
some points may be in the elastic range, as indicated by  in Fig. 7.11(c).
In the case of incremental analysis, it becomes necessary to consider both
possibilities.

In order to check whether or not the current surface F � 0 is satisfied, we
need to calculate the hardening function, �, Eq. (7.11). This is achieved by cal-
culating the plastic strain increment as

(7.55)

in which the elastic strains vector,  , is obtained from

(7.56)

Once   is found, the total plastic strain trajectory [Eq. (7.26)] is found as

(7.57)

Then, �i is found from Eq. (7.11).
Now,  and �i are substituted in Eq. (7.1) as

(7.58)

If F � 0, then the new stress point lies on the corresponding yield surface,
and we proceed to the next increment.

Elastic State. If F � 0, the new stress point is in the elastic (unloading)
region; and if F � 0, (drift) correction is needed. For elastic unloading [A to
A2 or  to  Fig. 7.11(c)], assuming that during unloading, no plastic
strains occur (i.e., �A remains the same), the total stress is found as

(7.59)

7.7.2 Elastic-Plastic Loading

If F � 0, i.e., there is elastoplastic loading, two cases need consideration.
Case 1. The material is in the elastic range at the start of the current incre-

ment and yields during this increment,  to ; Fig. 7.11(c). Since the behavior
is elastic from  to C, it is necessary to calculate the stress state at C so as to
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apply the drift correction scheme for C to . Here, a Newton–Raphson-type
procedure can be used to find, iteratively, from iterations (j � 1, 2, . . . , m) the
fraction of the stress increment that provides the location of point C. For this,
we write the yield surface, F, as

(7.60)

Therefore,

 (7.61)

which represents the portion of the total stress increment that represents the
correction to locate the stress state at point C. Then the stress at the jth itera-
tion is given by

(7.62)

Here,  � . The iterations j are continued until convergence is reached.
For instance, the convergence is considered to have been reached when

(7.63)

where  is the tolerance, which can be equal to  (or less).
Now, the actual strain increment,  from C to , is computed as the strain

increment,  minus the elastic strain increment from  to C, i.e.,

(7.64)

With the above information, we have the stress at point C �
and the stress at point  (or B) � ; and the strain increment  from C to

. Now we can apply the correction so as to locate F � 0 at point D, Fig. 7.11(c).
Case 2. Here, the increment starts at point A when FA � 0, which is a spe-

cialization of case 1.

7.7.3 Correction Procedures

A number of correction procedures have been proposed in the context of the
incremental-iterative analysis for the integration of elastoplastic equations,
e.g., subincrementation (2, 28, 48), drift correction (49, 28), and substepping
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(50). The subincrementation procedure may lead to convergence if the subin-
crements (of strain) are adopted to be very small. It can be appropriate for
integrating the incremental constitutive equations, Eq. (7.44), for backpre-
dicting stress–strain responses. However, when the finite-element analysis,
with many elements, is to be performed, the subincrementation procedure
can be time-consuming and may not often provide convergence. In that case,
the drift correction based on predictor-correction procedures, often in combi-
nation with the subincrementation procedure, can provide improved and
robust schemes. In the substepping scheme, the stress increments are com-
puted on the basis of known strain increments by adjusting the size of each
substep automatically (50). The subincrementation and drift correction pro-
cedures are used commonly with the HISS-plasticity models. Hence, their
details are given below.

7.7.4 Subincrementation Procedure

It is first required to set initial values of various quantities as

(7.65)

Here the strain increment corresponding to C to  (or A to B) is divided into
a number of small strain increments  � �n, where n is the number
of subincrements, Fig. 7.11(c).

For each subincrement, say the mth, the total stress is computed as

(7.66)

and the corresponding hardening parameter,  is found by computing the
trajectory,  as

(7.67)

where 

and � is computed using Eq. (7.43).
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(described below) for the current subincrement so as to improve the accuracy,
before going to the next strain subincrement (m � 1).

For the next subincrement, compute the constitutive matrix, , using
Eq. (7.44). Then apply the next subincrement,  and go to Eq. (7.66).
When all subincrements are applied, Fig. 7.11(c),

(7.68)

In the case of the integration of the incremental equations for back predic-
tions of stress–strain responses, it may be necessary to perform the above
procedure only once before proceeding to the next increment. However, for
finite-element analysis, it needs to be performed for all Gauss points in the
elements, and the quantities in Eq. (7.68) are stored for all such points before
proceeding to the next (load) increment.

7.8 Drift Correction Procedure

A drift correction procedure can be used by itself or together with the subin-
cremental strain scheme described earlier. It is believed that the drift correc-
tion procedures are needed in finite-element analysis with most nonlinear
(plasticity) models.

Assume that for both cases 1 and 2, the yield surface at the start (at C or A)
is satisfied [Fig. 7.11(c)], i.e.,

(7.69)

Now, the current increment, i, causes the stress increment, , which takes
us to point B [Fig. 7.11(c)], at which  is not satisfied. The yield
surface condition is satisfied at the (desired) point D, where F � 0.
Hence, the drift correction procedure would entail modifications in  and

 so as to lead to .
The quantities at point B are found as follows:
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where

(7.70b)
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(7.71b)

(7.71c)

Here,  � �  and  is found using Eq. (7.52).
Now let the errors or modification required in the elastic and plastic incremen-

tal strains be denoted as  and  Then [Fig. 7.11(d)], respectively.

(7.72)

Considering that the strain increment  � �  is the same at
point D [Fig. 7.11(d)], we have

(7.73a)

Therefore,

(7.73b)

In other words, the plastic strains from B � D are accompanied by an equal
decrease in the elastic strains.

Then, at the converged state, D, we have

(7.74a)

where

(7.74b)

and the hardening parameters are

(7.75a)

where

(7.75b)

where the functions f1 and f2 will depend on the hardening function used, e.g.,
Eq. (7.11).
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Substitution of Eqs. (7.74a), (7.75a), and (7.75c) in the equation for F gives

(7.76)

which, when expanded into the Taylor series, gives

(7.77)

Now, from the normality rule,

(7.78)

Here, Q ≡ F for associated plasticity.
Substitution of Eq. (7.78) into (7.75b) gives

(7.79)

Substitution of Eqs. (7.73b) and (7.78) into Eq. (7.74b) gives

(7.80)

Now, substitution of Eqs. (7.79) and (7.80) into Eq. (7.77) gives

(7.81)

Ignoring higher-order terms, we find the expression for �BD as

(7.82)

F 	
˜ B d	

˜ BD�( ) f 2 �B d�BD�( ),[ ] 0�

F 	
˜ B, f 2 �( )B

�F
�	

˜

------- 
 

T

d	
˜ B�D

�F
� f 2
-------- 

  d f 2�

B

…� � 0�

d

˜ BD

p
�BD

�Q
�	

˜

-------- 
 

B

�

d�BD �BD f 1
�Q
�	

˜

-------- 
 
�

d	
˜ BD �BD C

˜
e�Q
�	

˜

--------��

F 	
˜ B, f 2 �( )B  � 

�F
�	

˜

------- 
 

B

T

C
˜

e�Q
�	

˜

-------- �F
��
------- 

  � f 2

��
-------- 

 
B

f 1
�Q
�	

˜

--------
�
 
 
 

B

�B�D
…� � 0�

�BD

F 	
˜ B, f 2 �( )B[ ]�

 � 
�F
�	

˜

------- 
 

B

T
C
˜

e�Q
�	

˜

--------
�F
��
-------

� f 2

��
---------


 
 
 

B

f 1
�Q
�	

˜

--------
�
 
 
 
-------------------------------------------------------------------------------------------�



© 2001 By CRC Press LLC

Hence, the quantities at D can be found as

(7.83a)

(7.83b)

and

(7.83c)

Hence,

(7.84)

should be satisfied, for a given tolerance  to  Then, Eq. (7.84) will
represent the converged yield surface for increment i.

As the higher-order terms in Eq. (7.81) are ignored, it may be appropriate
and sometimes required to perform iterations using the result in Eq. (7.82).
Here, the solutions obtained in Eq. (7.83) can be substituted in Eq. (7.82), and
the next set of the quantities are calculated. The procedure is continued until
Eq. (7.84) is satisfied.

7.9 Thermoplasticity

The temperature effects in the plasticity model can be introduced through the
modification of various terms. For example, the yield function in the HISS (�0)
model can be expressed as (39, 40)

(7.85)

where T is the temperature,   � J1 � 3R, R(T) is the bonding stress; here, the
invariant quantities denote nondimensionalized values with respect to pa.
The temperature-dependent hardening function, �, can be written as

(7.86)
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where a1 and �1 are hardening parameters that may be expressed as functions
of T, and � is the thermoplastic strain trajectory. Depending on the effect of
temperature, a1 and�or �1 may be essentially constant with temperature.

The normality rule can now be used (51, 52):

(7.87)

The total incremental strain vector   can be decomposed as

(7.88)

where   is the strain vector due to the temperature change, dT. Hence,

(7.89)

and

(7.90)

where   � [1 1 0] and [1 1 1 0 0 0] for two-dimensional and
three-dimensional cases, respectively.

Now the consistency condition gives

(7.91)

Therefore,

(7.92)

The use of Eqs. (7.89), (7.90), and (7.91) leads to the expression of � as

(7.93)
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Substitution of � in Eq. (7.90) gives

(7.94a)

(7.94b)

where   is the unit matrix.
Material Parameters. The variation of the elasticity and plasticity param-

eters and �T is shown in Eq. (7.29). Their determination has been discussed
earlier in Section 7.4.7, “Thermal Effects on Parameters.”

7.10 Examples

We now present examples of derivations and properties of some of the
expressions in the HISS models, analysis of the effect of stress paths, and val-
idation of the models with respect to the laboratory test behavior of a number
of materials.

Example 7.1
Derive the conditions on parameters n, �, and � in the yield function, F of
Eq. (7.1).

Parameter n:
The state when the volume transits from compaction to dilation, or change in
volume vanishes, i.e., d
v � 0, is related to the highest point on the yield sur-
face (Fig. 7.1), where  � 0:

(1a)

, Fs, and � refer to the state of stress at the transition. Equation (1a) leads to
(as Fs ≠ 0)

(1b)

d	
˜

C
˜

e T( ) I
˜

�  

�Q
�	

˜

--------
�F
�	

˜

------- 
  T

C
˜

e T( )


�F
�	

˜

------- 
  T

C
˜

e T( )�Q
�	

˜

-------- �F
��
------ �Q

�	
˜

--------
 
  T �Q

�	
˜

--------

1�2

�

------------------------------------------------------------------------------------- d

˜

�

C
˜

e
� T( ) �TI

˜0 �  

�T
�F
�	

˜

-------C
˜

e T( ) I
˜0

�Q
�	

˜

-------- �F
�T
-------

�Q
�	

˜

--------�


�F
�	

˜

------- 
  T

C
˜

e T( )
�Q
�	

˜

-------- �F
��
------

�Q
�	

˜

-------- 
  T �Q

�	
˜

--------
1�2

�

-------------------------------------------------------------------------------- dT

C
˜

ep T( )d

˜

d	
˜

T( )��

I
˜

T

�F��J1

�F
�J1

------- �nJ1
n�1

2�J1�( )Fs 0��

J1

J1( )t
2�

�t n

------------- 

 
1

n�2
------------

�



© 2001 By CRC Press LLC

where the subscript t denotes transition. Now Eq. (7.1) at the transition
becomes

(1c)

Substitution of Eq. (1b) in Eq. (1c) leads to

(1d)

Because Fs and�t are positive, the term in the brackets should be nonnegative.
Therefore, n � 2. 

Alternatively, for � � 0, Eq. (7.1) gives

(1e)

The curvature, �, of the projection surface (curve) in Eq. (1e) can be
expressed as

(1f)

For the yield curve to be convex, � � 0. Solution of Eq. (1f) numerically leads
to the condition that n � 2 (53).

Parameter � :
At the ultimate condition, � � 0. Therefore, from Eq. (7.1) we have

(1g)

As � 0 and  � 0, and as � � 1 (see below),  � 0. Hence,
� � 0.
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the J1-axis at infinity. For � � 0, the yield surface (Fig. 7.1) will intersect the
J1-axis at finite values. For � � ∞, the state of stress will be at  � 0.

Parameter � :
The slope (�) of an ultimate envelope [Fig. 7.4(a)] is given by

(1i)

For Fs � 1 when Sr � 0, i.e., for the simple shear (S) stress path,  � �.
For other stress paths, i.e., Sr � !1 (Sr � 1 for compression and � �1 for
extension paths):

(1j)

or

(1k)

If � � 0,  � �. If � � 1, Eq. (1j) gives  � 0, which is inadmissible.
If � � 1, (1 � �) in Eq. (1j) would give a negative value, which is not admis-
sible. Hence, 0 � � � 1.

Alternatively, from Eq. (7.1) we have

(1l)

where  C1 � � �  � constant. On the "-plane in the principal stress
space (Fig. 7.12), we have (53)

(1m)

where Si (i � 1, 2, 3) are the normal components of the deviatoric stress tensor,
Sij; x, and y are the Cartesian coordinates; and r is the radius of the polar coor-
dinate system. Then Eq. (1m) leads to
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For the yield surface to be convex, � should be such that the curvature, � � 0,

(1o)

The numerical solution of Eq. (1o) shows that

Example 7.2 Derive Eq. (7.24)
At point B [Fig. 7.5(e)] J2D � 0. Assuming Sr � 0, we have, from Eq. (7.1),

(2a)

Therefore,

(2b)

Now, the use of Eq. (1b) in Eq. (2b) gives

(2c)

where J1a is related to the phase change point A [Fig. 7.5(e)].
At the ultimate condition, � � 0; therefore, Eq. (7.1) leads to

(2d)

FIGURE 7.12
Plot on "-phase (53).
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where � is the slope of the ultimate line [Fig. 7.5(e)]. Equation (7.1) can be
written as

(2e)

Now, substitution of Eq. (1b) at the transition state in Eq. (2e) gives

(2f)

where �t is the slope of the phase change line [Fig. 7.5(e)]. Therefore,

(2g)

Example 7.3
Derive the relations between the slopes (compression and extension) in the
J1–  and �–	 (Mohr–Coulomb) stress spaces.

It is useful to derive the relations (Eq. 7.13) between the slope of the ultimate
surface and  [Fig. 7.4(a)], the traditional slope (�) of the failure
envelope in the Mohr–Coulomb criterion [Fig. 7.4(b)]. Then, � can be com-
puted from the angle of friction, �.

First consider compression path. From Fig. 7.4(b), we have

(3a)

At the ultimate condition, � � 0; therefore,

(3b)

Now, by substituting 	2 � 	3, we have
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Therefore,

(3c)

Then Eqs. (3a), (3c), and (3d) give

(3d)

where  is the slope of the ultimate envelope [Fig. 7.4(a)].
Similarly, for the extension path,

(3e)

7.11 Stress Path

The behavior of most materials is influenced by the path of loading or stress
path. The stress paths are usually depicted on stress spaces such as J1– ,
	1– 	1–	2, and 	1–	2–	3. In the case of materials such as metals
and alloys, tensile loading is often more significant. Here, tension is consid-
ered to be positive. Figure 7.13(a)  shows uniaxial tension and compression
test (	1 $ 0, 	2 � 	3 � 0) and a schematic of stress–strain responses. The stress
path followed during the uniaxial tension (UT0) and uniaxial compression
(UC0) tests are depicted in three stress spaces [Fig. 7.13(a)]. In the J1–
space, the stress path has the slope of 

In the 	1–	2 space, the stress paths are vertical. In the 	1–	2–	3 space, the
stress paths follow the 	1-axis.

Figure 7.13(b) shows straight-line stress paths used commonly for fric-
tional (geologic) materials. Often, other stress paths such as proportional
loading (PL) and circular (CSP) are followed. The latter can capture the com-
bined effect of a number of stress paths in a single test. Table 7.3 shows an
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explanation of various stress paths and their loading conditions in terms of
principal stresses, 	1, 	2, and 	3.

7.11.1 Stress Path Analysis of the HISS Model

Material points in any engineering structure may experience changes in
the stress paths during loading, unloading, and reloading. For instance, during
increasing load, a point may follow the compression stress (CTC) path
[Fig. 7.13(b)]; however, upon unloading, it may follow the opposite path

FIGURE 7.13
Stress paths in testing.



© 2001 By CRC Press LLC

TABLE 7.3

Explanations of Stress Paths

Stress Increments During Loading
and Unloading

Symbol Explanation Initial Increment

HC Hydrostatic compression 	1 � 	2 � 	3 � 0 d	1 � d	2 � d	3 � d	0

CTC Conventional triaxial 
compression

	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 0

RTE Reduced triaxial extension 	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 0
CTE Conventional triaxial 

extension
	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 0

RTC Reduced triaxial 
compression

	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 0

TC Triaxial compression 	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 

TE Triaxial extension 	1 � 	2 � 	3 � 	0 d	1 � 0, d	2 � d	3 � 

SS Simple shear 	1 � 	2 � 	3 � 	0 d	1 � �d	3, d	2 � 0
PL Proportional loading 	1�	2 � 	3�	0 � constant
A Arbitrary (e.g., circular) Design any path in the stress space.

FIGURE 7.13
(continued)
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(RTE). In fact, points in different regions in the same structure under tension
or compression loading may follow different stress paths. Hence, a constitu-
tive model should be able to handle the changing or switching stress paths.
Gudehus (54) proposed a procedure for analyzing the capability of constitu-
tive models for the stress-path dependence. It is based on the idea of applica-
tion of unit strain rate (increment) along different stress paths and then
evaluating the corresponding induced stresses along different paths in the
stress space. Dolezalova and co-workers (55, 56) have presented the applica-
tion of this procedure for the evaluation of a number of constitutive models
such as nonlinear elastic (hyperbolic and variable moduli, Chapter 5), asso-
ciative plasticity (Cam clay, Chapter 6), and nonassociative plasticity by Lade
et al. (8, 9), and the HISS-�1 model. Here, we present a brief review in the con-
text of the HISS-�1 model.

Figure 7.14 depicts the stress-path groups and switch functions considered
for the analysis (55, 56). Here, the typical stress-path groups are identified as
11, 12, 41, 42, and the switch conditions are defined on the basis of �	oct, ��oct,
and i, where 	oct (	1 � 	2 � 	3 � J1) is the octahedral stress,  �oct is the octahe-
dral shear stress, i is the ratio �oct� , and  is the limiting octahedral
stress. Figure 7.15(a) and (b) show applied strain increments in different direc-
tions and the corresponding stress increments, respectively. The latter are
computed based on the incremental constitutive equations for the model ana-
lyzed. For the triaxial loading condition, the unit strain increment (rate 1,  �

 and the incremental stress response  �  respectively.
Figure 7.16 shows the unit response envelopes for the nonassociative HISS-

�1 model. Similar envelopes for other models have been reported by Dolezalova
et al. (55). Based on these analyses, it was reported that the nonlinear elastic
(hyperbolic) and the associative Cam clay models show weak response and do
not account properly for the stress-path group 12. Also, as the yielding is
controlled only by the volumetric strains, the Cam clay model, if used for

FIGURE 7.14
Stress path groups and switch functions (From Ref. 55. Reprinted with permission from
A.A. Balkema).
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frictional materials, leads to overestimation of computed displacements during
finite-element analysis. The nonassociative models do provide satisfactory
prediction of stress responses under various stress paths. In particular, it is
reported (55) that the HISS-�1 model provides realistic predictions, partly
because it allows for the effect of both volumetric and deviatoric (plastic)
strains in the characterization of the yielding behavior.

7.12 Examples of Validation

We now present a number of examples of the application of the DSC and its
specialized versions, e.g., the HISS-�0/�1 plasticity models. When distur-
bance is considered, the HISS-plasticity (�0) model is used commonly to char-
acterize the behavior of the RI material. The FA response is characterized as

FIGURE 7.15
Strain increment and corresponding stress response (56).
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constrained-liquid or constrained liquid-solid (critical state), Chapter 4. Only
a few validations are presented, while references are given for other materials.

The observed laboratory behavior of the materials considered is used to
find the parameters by employing the procedures described in this chapter
and in Chapters 5 and 6. The values of parameters are given for most of the
examples.

The incremental equations, Eq. (7.44), are used to predict the responses
under different factors such as stress path, type of loading, and initial condi-
tions such as confining pressure and density. The incremental equations are
integrated for the initial loading such as hydrostatic. Based on the state of
stress at the end of the initial loading, the values of parameters such as the
hardening function (�0) and the disturbance (D0) are computed. Then the
equations are integrated for the subsequent shear loading under a given
stress path. The validations are often obtained for the test data used to find
the parameters, and for independent tests not used in finding the parameters;
the latter provides a more rigorous validation.

In the case of frictional and geologic materials, the response is affected by
mean pressure. Hence, tests are usually performed under different initial
mean pressures or confining stresses. Also, compressive behavior is often sig-
nificant; hence, tests are usually performed under compression loading, with
the assumption that compression is positive. Geologic materials involve ini-
tial compressive stresses. Under loading, the compressive stresses may
increase or decrease. The latter is often termed as an extension. To determine
tensile behavior, sometimes direct tension or indirect (e.g., Brazilian split cyl-
inder) tests are performed.

FIGURE 7.16
Unit response envelopes for Leighton Buzzard sand with HISS-�1 mode. (From Ref. 55. With
permission.)
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Example 7.4 Initial Conditions 

Hardening:
The expression of � can be obtained from Eq. (7.1) as

(4a)

The initial value �0 can be found by substituting in Eq. (4a), J1, J2D, and Sr

computed from the initial or in situ stresses, 	x , 	y , �xy , for two-dimensional
and 	x, 	y, 	z, �xy, �yz, �zx  for three-dimensional problems. Now from Eq. (7.11a),

(4b)

Then, substitution of �0 in Eq. (4b) gives the value of the initial plastic strain
trajectory, �0.

If the initial loading can be assumed to be proportional, the (initial) volu-
metric plastic strain trajectory, �v0, can be found as (57)

(4c)

Then the initial deviatoric plastic strain trajectory, �D0, is evaluated from

(4d)

In the case of hydrostatic initial stress (	x � 	y � 	z ; �xy � �yz � �zx � 0), for
example, in the triaxial test, Eq. (4a) simplifies to

(4e)

Disturbance. The initial disturbance, D0, can be found using, e.g., Eq.
(3.15) or (3.16). Here it is necessary to have the knowledge of the initial (devi-
atoric) plastic strain trajectory, which is often difficult to find. However, lab-
oratory tests can be performed, say, on an initially anisotropic material and�or
with initial flaws (microcracks), under a small hydrostatic loading. Such a
loading will cause shear strains in the specimens, which can be used to
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evaluate the plastic strains. Alternatively, nondestructive (ultrasonic P-wave)
tests can be performed to measure initial velocities in the principal (three)
directions. Then, D0 can be found based on measured velocities (58).

Example 7.5 Metal Alloys (Solders)
The elastoplastic behavior of metal alloys such as solders (Pb/Sn) can be
characterized using the �0 model, and the DSC model can be used for their
cyclic response involving softening or degradation. Often, behavior of
these materials can be assumed not to be affected by the mean pressure, and
hence, the value of the ultimate parameter, �, will be small, and � � 0, implying
that the yield surface in the 	1–	2–	3 space [Fig. 7.1(b)] is essentially circular.
At the same time, the behavior is usually nonlinear and plastic hardening or
yielding (Fig. 7.8). Hence, it is often appropriate to use the �0-model with the
hardening function, � [Eq. (7.11a)].

The value of � can be estimated by using Eq. (7.20). If test results at different
confining stresses are not available, and if the response is not affected signif-
icantly by the confining stress, an ad-hoc procedure can be used (39). For the
stress–strain response under a given temperature, Fig. 7.8, the ultimate values
of J1 and  are plotted on the J1–  stress space, Fig. 7.17. A value of 
of about 95% of the   is adopted at J1 � 0.0 (Fig. 7.17). The slope of
the line joining the two stress states yields the value of  while its intersec-
tion with the J1-axis gives the value of the bonding (compressive) stress (3R).
The same value of � can be used for other temperatures. However, the values
of the bonding stress will be different; it will decrease with temperature.

The parameters for the �0-plasticity model for 60�40 (Sn�Pb) solders tested
under tension loading by Riemer (42) and Skipor et al. (59), with different

FIGURE 7.17
Determination of � and 3R for Pb/Sn solder (39, 40).
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temperatures and strain rates, were computed by using the foregoing proce-
dures; details are given elsewhere (39, 40). Tables 7.4(a) and 7.5(a) show typical
parameters for the solder at  � 0.002�sec and 0.0002 �sec, respectively, and
for different temperatures. The parameters for the temperature dependence,
Eq. (7.29), are shown in Tables 7.4(b) and 7.5(b), respectively. Details of the
viscoplastic model are given in Chapter 8.

The disturbance parameters were found from the cyclic test data (Fig. 7.18)
reported in (60). Their values are shown in Table 7.6. A number of other test
data for different solders (61–64) were also used to find parameters for differ-
ent and similar solders.

Figure 7.19 (a)–(d) show typical comparisons between predicted and observed
stress–strain data for different solders (64). Figure 7.19(a)–(c) show plastic
hardening results for 63/37 (Sn�Pb) solder at T � 373K,  � 0.01�sec (59); for
95�3 (Pb�Sn) solder, T � 100%C (61), and for 60�40 (Sn/Pb) solder, T � �50%C
and � 0.001�sec (63). The cyclic stress–strain response showing degrada-
tion was predicted using the DSC with the �0-model for the RI behavior, for
95�5 (Pb�Sn) solder at T � 20%C (62). It can be seen that the HISS-�0 and DSC
models provide very good predictions for the plastic yielding and degrada-
tion responses of Pb�Sn solders.

TABLE 7.4(a)

Parameters for Solder (Pb40/Sn60) at  � 0.002/sec: �0-Model (39)

Temperature (K) 208 273 348 373

E (GPa) 26.1 24.1 22.45 22.00
� 0.380 0.395 0.408 0.412

�T (1/K) � 2.75 2.93 3.11 3.16
� 0.00083 0.00082 0.00082 0.00081
� 0.0 0.0 0.0 0.0
n 2.1 2.1 2.1 2.1

a1 (� ) 8.3 2.93 1.25 0.195
�1 0.431 0.553 0.626 0.849

�1 (average)} 0.615
	y, yield stress (MPa)  37.241 31.724 20.690 15.172 

Bonding stress, R (MPa) 395.80 288.20 175.20 122.10

TABLE 7.4(b)

Parameters for Temperature Dependence, 
Eq. (7.29) (39)

Parameter p300 c

E 23.45 (GPa) �0.292
� 0.40 0.14
�T 3 �  (1�K) 0.24
� 0.00082 �0.034
� 0.05 � �5.5
R 240.67 (MPa) �1.91


̇
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7.12.1 Examples of Geologic Materials

Comprehensive laboratory triaxial tests on cylindrical specimens and
multiaxial tests on cubical specimens have been performed and were
available for a number of geologic materials such as sands, clays, and
rocks. These tests are performed at different initial confining pressures
and densities, and stress paths [Fig. 7.13(b)]. Only typical materials are
considered here.

Parameters for the �0- and �1-HISS plasticity models were determined
using the foregoing procedures. Table 7.7 shows the values of the parameters
for three dry sands: Ottawa, Leighton Buzzard, and Munich for the �0- and
�1-models (3, 19, 20, 65, 66). Table 7.8(a) and (b) shows the �0- and disturbance
parameters for a saturated marine clay (32) and Leighton Buzzard sand (66),
respectively, and Table 7.8(c) shows parameters for a saturated sand (67, 68).
Table 7.9 shows parameters for three rocks (33, 34). 

TABLE 7.5(a)

Material Parameters for 60/40 (Sn/Pb) Solder at Different Temperature for
 = 0.0002�sec: �0-Model (39)

Temperature (K) 208 273 298 348 373

E (GPa) 26.10 24.10 23.50 22.45 22.00
� 0.380 0.395 0.400 0.408 0.412

�T (1/K) � 2.75 2.93 3.00 3.11 3.16
� 0.00083 0.00082 0.00082 0.00081 0.00079
� 0.0 0.0 0.0 0.0 0.0
n 2.1 2.1 2.1 2.1 2.1

a1 (� ) 0.30 0.16 0.024 0.04 0.11
�1 0.270 0.330 0.570 0.45 0.35

�1 (average) 3.94
	y, yield stress 

(MPa)
34.48 27.59 22.41 14.48 8.28

R (MPa) 433.80 284.58 217.47  116.57  73.90

TABLE 7.5(b)

Parameters for Temperature 
Dependence, Eq. (7.29) (39)

Parameter p300 c

E 23.45 (GPa) �0.292
�  0.40  0.14
�T 3.0 �  (1�K) 0.24
� 0.00082 �0.072
� 0.35 � �2.60
R 217.47 (MPa) �2.95
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Example 7.6 Sands �0/�1 Models
Figures 7.20, 7.21, and 7.22 show comparisons between the test data and pre-
dictions for typical stress paths, CTC and TE, and SS obtained by using
parameters in Table 7.7, for the Ottawa, Leighton Buzzard, and Munich
sands, respectively. Both �0 and �1 models were used. It is usually found that
the �0-associative model does not provide satisfactory predictions, particu-
larly for the volumetric response; this is indicated in Figs. 7.20 and 7.21.

TABLE 7.6

Disturbance Parameter for Pn40/Sn60 Solders at Different Temperatures, 
Obtained from Solomon (39)

Temperature 223� K 308� K 398� K 423� K

Plastic strain 0.103�0.307 0.04�0.082 0.022�0.102 0.036�0.097
Z average 0.7329�0.8697 0.5214�0.6031 0.6973�0.5914 0.6612�0.7224

0.676 0.676 0.676 0.676
A� 0.056�0.072 0.188�0.1298 0.0496�0.146 0.197�0.169

� ; disturbance function D �

FIGURE 7.18
Cyclic thermomechanical tests for eutectic (Pb/Sn) solder by Solomon (60): (a) total strain
controlled; (b) plastic strain controlled.
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TABLE 7.7

Parameters for Dry Sands

Sand
Parameter Ottawa Leighton Buzzard Munich

E MPa 262 79 63
(psi) (38,000) (11,500) (9,200)
�  0.37  0.29  0.21
� 0.124 0.102 0.105
� 0.494 0.362 0.747
N 3.0 2.5 3.20

0.135 0.1258

2.5 � 450 1355

�1 0.370 0.0047 .001

1.02 1.11
R 0.00 0.00 0.00
� 0.265  0.290 0.35

Eq. (7.11a)
Eq. (7.11c)

FIGURE 7.19 
Typical comparisons between model predictions and test data (39, 64): (a) 63�37 (Sn�Pb),
T � 373 K,  � 0.01�sec (59); (b) 95�3 (Pb�Sn), T � 100%C (61); (c) 60�40 (Sn�Pb), T � �50%C,

� 0.01�sec (63); (d) 95/5 (Pb�Sn), T � 20%C (62, 64).
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Example 7.7 Saturated Clay and Dry Sand: DSC Model
Clay: Figures 7.23 and 7.24 show comparisons between DSC predictions
and observed laboratory undrained behavior of one-way cyclic (stress does
not change sign) and two-way cyclic (stress changes sign) behavior for a
saturated marine clay tested under both cylindrical triaxial and multiaxial

TABLE 7.8a

Parameters for Saturated 
Clay: DSC Model (32)

Parameter Value

E, MPa (psi) 10
(1500)

� 0.35
� 0.047
� 0.00
n 2.80

0.0001
0.78

0.0694
� 0.169
eoc 0.903
A 1.73
Z 0.309
Du 0.75

�In Eq. (7.11b) with h3 � h4 � 0.

TABLE 7.8b

Parameters for Dry Leighton Buzzard Sand: DSC Model (66) 

Parameter Value

E, MPa (psi) 118
(17200)

� 0.30
� 0.065
� 0.65
n 2.50  
a0  0.00342
a2 0.01841 in Eqs. (7.b) and (7.c)
�0 0.3294
�2 0.83

0.20
� 0.13
eoc 0.75
A0 3.49
A3 �3.34
A4 3.28 in Eqs. (7.d), (7.e), and (7.f)
Z0 0.580
Z1 0.098

h1

h2 

�

m









m








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conditions (32); the parameters are given in Table 7.8(a). Here,  � initial
effective mean stress and e0 � void ratio. The stress–strain behavior in terms
of (	1 � 	3) vs. 
1, 
2, and 
3 (Fig. 7.23) is simulated very well by the DSC
model, including degradation in the later stages. These figures also show the
predicted relatively intact (RI) behavior according to the �0-associative plas-
ticity model.

The two-way cyclic behavior is also predicted very well by the DSC model,
including the degradation with cycles of loading [Fig. 7.24(a)] and the stress
paths followed [Fig. 7.24(b)]. The predicted pore water pressure response
also shows satisfactory correlation with the observations [Fig. 7.24(c)]. The
pore water pressure, p, was computed using the following equation:

(7a)

TABLE 7.8(c)

Parameters for Saturated Sand: 
�0-Model (67)

E, MPa 140
(psi) (20,420) 
� 0.15
� 0.636
� 0.60
n 3.0
a1 0.16 �

�1 1.17
R 0.00

TABLE 7.9

Parameters for Rocks (35, 36)

Rock
Parameter Soap Stone Rock Salt Sandstone

E, MPa 9,150 21,000 25,500
(psi) (1,328 � ) (3,050 � ) (3,700 � )

� 0.0792  0.27  0.11 
�  0.0470  0.0945  0.0774

�0.750  0.990  0.767
 0.0465  0.00048  0.0020

n  7.0  3.0  7.20
a1 0.177 � 1.80 �  0.467 �
�1  0.747  0.2322  0.345

R, MPa  1.067  1.80  2.90
(psi) (155) (260) (420)

� —  0.275 —

 *Eq. (7.15a)
**Eq. (7.15b)

10 4�
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where J1t is the first invariant of the total stress tensor, and  is the first
invariant of the average (predicted) effective stress.

Dry Sand: The Leighton Buzzard (LB) sand was tested using the cylindrical
triaxial device (66). The DSC model, Chapter 4, with the �0-model for the RI
behavior was used to characterize the behavior of the sand, which exhibited
softening response for higher densities (Dr) and lower mean pressures (	0 � p0).
The parameters for the sand are shown in Table 7.8(b). Here, the hardening
and disturbance parameters were expressed as dependent on relative density,
Dr , and �or initial confining stress, 	0:

(7b)

(7c)

(7d)

FIGURE 7.20
Comparisons between model predictions and test data for Ottawa sand: �0 � 1.73 g/cc;
1 psi � 6.89 kPa (20).
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(7e)

(7f)

Figure 7.25 shows comparisons between the DSC predictions and test
data for Dr � 95% and 	0 � 276 kPa (40 psi) under the CTC stress path. The
figure also shows predictions according to the �0-model used to simulate
the RI behavior. It can be seen in Fig. 7.25(b) that the �0-associative model

FIGURE 7.21
Comparisons between model predictions and test data for Leighton Buzzard sand: SS (	0 � 20
psi), �0 � 1.74 g/cc, 1 psi � 6.89 kPa (4, 19, 66).
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(RI) predicts a much higher volume change compared to the test data. How-
ever, the use of the DSC model provides much improved predictions. Thus,
the constraining effect due to friction is included in the DSC model, and it
may not be necessary to use a nonassociative model.

Example 7.8 Saturated Sand (67): �0-Model
Table 7.8(c) shows the parameters from test on sand C reported by Castro
(68). The sand is a natural beach sand from deposits at Huachipato, Chile,
and it is uniform fine sand with specific gravity, Gs � 2.87 and uniformity
coefficient � 2.3.

Figure 7.26 shows comparisons between prediction (�0-plasticity model)
and test data for the undrained behavior of sand under CTC path with 	0 �
98 kPa (14.21 psi). Both the stress–strain and pore water pressure responses
are predicted well by the plasticity model. 

FIGURE 7.22
Comparisons between model predictions and test data for Munich sand: nonassociative �1-
model: SS (	0 � 13 psi), �0 � 2.03 g/cc; 1 psi � 6.89 kPa (20).
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Example 7.9 Rocks
Laboratory stress–strain behavior of a soap stone and a rock salt, Table 7.9,
were obtained from tests with cubical specimens (33, 34, 36). The test data
using cubical specimens for a sandstone found in Japan, reported by Nishida
et al. (69), were used.

Figures 7.27 to 7.29 show comparisons between predictions using the �0-
model for the soap stone, rock salt, and sandstone; both the �0- and �1-models
were used for the rock salt. The results for the soap stone and sandstone are
under the SS and TC paths, while those for the rock salt are for the CTC path.
It can be seen that the volumetric strains are predicted better for the rock salt
by the �1-model (Fig. 7.28), while the �0-model shows discrepancies in the
volumetric response for the other two rocks, Figs. 7.27 and 7.29; use of the �1-
model would improve the predictions.

FIGURE 7.23
Comparisons between model predictions and one-way cyclic test data for marine clay: CTC
( � 110 psi); e0 � 0796 (32), 1 psi � 6.89 kPa.	�0
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Figure 7.30 shows comparisons between predictions and test data under
the CTC path (cylindrical triaxial tests) reported by Waversik and Hanum
(70) for a similar rock salt. The parameters in Table 7.9 for the rock salt tested
under multiaxial tests (36) were used to predict the behavior of rock salt
reported in (70). Thus, this is an independent validation and, overall, shows
good correlation.

FIGURE 7.24
Comparisons between model predictions and test data for marine clay; two-way cyclic tests;

� 20 psi; e0 � 0.9123 (32).	�0
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Example 7.10 Concrete: �0-Plasticity Model
Table 7.10 shows material parameters for the �0-model for a plain concrete
tested under stress-controlled multiaxial loading. Cubical specimens were
tested under different initial confining pressures and stress paths [Fig. 7.13(b)]
(35). Figure 7.31(a) shows comparisons between predictions and test data
(solid circles and triangles) for the ultimate behavior under different stress
paths and in different stress spaces. Figure 7.31(b) shows a typical comparison
between predictions of stress–strain and volumetric responses and test data
for the SS stress path with 	0 � 31 MPa (4.5 � psi) and the TE stress path
with 	0 � 28 MPa (4.0 � psi).

The parameters (Table 7.10) were determined from test data under various
straight-line stress paths [Fig. 7.13(b)]. An independent test was performed in

FIGURE 7.25
Comparisons between model (DSC) predictions and test data for Leighton Buzzard sand
(CTC, 	0 � 40 psi); Dr � 95% (66).
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FIGURE 7.26
Comparisons between model predictions and test data for saturated sand: CTC (	0 � 14.21
psi); 1 psi � 6.89 kPa (67).

FIGURE 7.27
Comparisons between model predictions and test data for soap stone. (From Ref. 33. Re-
printed with permission from Elsevier Science.)
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which the stress path followed was circular [Fig. 7.13(b)]. This test involved
�oct � 7.0 kPa and 	0 � 28.0 kPa. Figure 7.32 shows comparisons between
predicted and observed strains under the circular stress path [Fig. 7.13(b)].
This is an independent validation and shows satisfactory predictions by the
�0-model.

Example 7.11 Concrete: DSC Model
Strain-controlled tests on cubical specimens of plain concrete were reported
by Van Mier (71). The parameters for the DSC model were obtained using the
tests under uniaxial and proportional loading stress paths (72, 73); they are
shown in Table 7.10. In the DSC model, the RI behavior was simulated by

FIGURE 7.28
Comparisons between model predictions and test data for rock salt: CTC (	0 � 0.0 MPa).
(From Ref. 36, ©American Geophysical Union. Reprinted with permission.)
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using the �0-plasticity model, and for the FA behavior it was assumed that
material in that state can carry hydrostatic stress but no shear stress.

Figure 7.33 shows comparisons between predicted and observed test
results in terms of �oct vs. 
1, �oct vs. 
2, and 
v  vs. 
1 responses for the loading
path 	1�	2 � 	1�	3 � 10 (71).

Example 7.12 Geologic (Unbound) Materials 
in Pavements: Repeated Loading
Bonaquist (74) and Bonaquist and Witczak (75) conducted a comprehensive
series of laboratory triaxial tests on geologic materials (base, subbase, sub-
grade) in pavement structures. They used a simplified form of the HISS
�0-model, without the term Fs in Eq. (7.1), to characterize the elastoplastic
behavior of the materials. They also developed procedures for reducing the
parameters (e.g., by expressing some in terms of others) toward practical
application, and considered important factors such as pore water pressure
effects, partial saturation, and repeated loading permanent deformations

FIGURE 7.29.
Comparisons between model predictions and test data for sandstone: TC (	0 � 28.45 psi)
(34); 1 psi � 6.89 kPa (35).
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leading to rutting in pavements. Table 7.11 shows the parameters for the three
materials. Determination of parameters involved numerical optimization in
which the values of n and �1 were maintained at their average values of 3.25
and 0.50, respectively. The hardening parameter, a1, was expressed in terms

FIGURE 7.30
Comparisons between model predictions and test data for similar rock salt: CTC (	0 � 3.45
MPa). (From Ref. 36. ©American Geophysical Union. Reprinted with permission.)
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of � as

(12a)

Thus, knowledge of the ultimate (failure) parameter  can be used to eval-
uate the hardening parameter a1.

7.12.2 Repeated Loading and Permanent Deformations

A special procedure was developed, in the context of the HISS model, to cal-
culate the permanent deformations under repeated loading, based on the
bounding surface approach [Mroz et al. (12); Bonaquist and Witczak (75)].
During cyclic loading (loading, unloading, and reloading), the yield surface
(Fi) that defines the elastic limit expands with the number of cycles, i � N
[Fig. 7.34(a)], which causes cyclic hardening. It is defined based on the accu-
mulated plastic strains (�i) at the end of a given cycle:

(12b)

where �0 is the trajectory corresponding to the initial or in situ stress condi-
tions, and �b corresponds to the bounding surface for the applied load (stress)
amplitude, Pmax [Fig. 7.34(b)], or the maximum applied load (stress) [Fig.
7.34(c)], and hc is the cyclic hardening parameter. The value of hc is found
from measured test results in terms of accumulated plastic strains vs. the
number of cycles (Fig. 7.35). These figures show the measured and computed

TABLE 7.10

Parameters for Plain Concrete (35)

Parameter
Concrete – 1 
�0-Model (35)

Concrete – 2 
DSC Model (72, 73)

E, MPa (psi) 7000 5400
( ) (0.78 � )

� 0.154 0.25
� 0.1130 0.0678
�0 0.8437

�
0.755

�1 .027
n 7.0 5.237
a1 9 � 4.614 �
�1 0.44 0.826

R, MPa 2.72 15.85
(psi) (395) (2300)

A — 668
Z — 1.50
Du — 0.875

106 106

10 3� 10 11�

a1 0.0001056 e4 �
�

�

�i �0 1
1

Nhc
--------� 

  �b � �0( )��
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plastic strains for subgrade and base materials, respectively. Figure 7.36
shows comparisons between predictions and measurements for a multiple
load-level test (74). Here, during a load-level, the given stress   was
cycled for a fixed number of cycles; each level involved different values of J1

and .

Example 7.13 Rock (Granite) under High Pressure
Triaxial compression tests were performed by Alheid (76) on granite speci-
mens under confining pressures up to 4.5 kb (450 MPa) and temperature up
to 350%C. Figure 7.37 shows laboratory test behavior of the granite in terms of
stress difference (	1 � 	3) vs. 
1 and (	1 � 	3) vs. 
v (� 
1 � 
2 � 
3). The
behavior exhibits strain softening. However, the �0-plasticity model was used

FIGURE 7.31
Comparison between model predictions and test data for plain concrete (35).
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FIGURE 7.31
(continued)

FIGURE 7.32
Comparisons between model predictions and test data for plain concrete: circular stress
path, 	0 � 4 ksi, �oct � 1 ksi; 1 psi � 6.89 kPa (35).
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FIGURE 7.33
Comparisons between model predictions and test data for plain concrete: loading path,
	1/	2 � 	2/	3 � 10.0. (From Ref. 72, with permission from Elsevier Science.)

TABLE 7.11

Parameters for Pavement Materials (74)

Material

Parameter
Base:

Crushed Aggregate
Subbase:

Silty Sand
Subgrade:
Silty Sand

� 0.265 0.0756  0.0328
a1 8.31 � 2.93 � 2.45 �
�1 0.50 0.50 0.50
n  3.25 3.25 3.25

R (kPa) 0.00 14.00 31.00

10 4� 10 4� 10 4�
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to characterize the elastoplastic hardening behavior (77). The parameters for
the �0-model are given in Table 7.12.

Test data on a similar granite reported by Mogi (78) using a multiaxial
device under compression and extension paths were used to find the value of
� using Eq. (7.13d), with tan �C � 0.418 and tan �E � 0.258. The value of R was
adopted equal to about 10% of the uniaxial compressive strength for the
granite of about 180 MPa.

Typical comparisons for the (	1 � 	3) vs. 
1 responses for 	0 � 78 and 157 MPa
are shown in Fig. 7.38(a) and (b), respectively. It can be seen that the �0-model
predicts the elastoplastic behavior very well. It is reported (76) that the rock expe-
riences microcracking and slip, resulting in degradation and strain softening
(Fig. 7.37). Hence, to characterize the complete response, it would be appropriate
to use the DSC model.

Example 7.14 Optimum Tests and Sensitivity of Parameters
To determine material parameters, it is desirable to use laboratory tests under
as many stress paths and (initial) conditions as possible. Then the constitutive
model calibrated on the basis of the tests would include effects of the stress

FIGURE 7.34
Cyclic hardening under repeated loading.
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paths and conditions that influence the field behavior. However, in practice,
it may not be possible to perform many such tests, and it may become neces-
sary to estimate the parameters based on the optimum (or minimum) num-
ber of available tests.

In order to determine the optimum number of tests, detailed parametric
evaluations were performed. Here, predictions for stress–strain–volume
change behavior of a sand (79) tested using the standard and commonly
available triaxial device with cylindrical specimens were compared using
parameters determined from various sets of tests under different stress paths.

The parameter � was expressed as function of J1 as in Eq. (7.15b). The non-
associative parameter � was assumed to be a function of the stress ratio, Sr

[Eq. (7.1)] as

(13a)

FIGURE 7.35(A)
Comparisons between model (�0-cyclic hardening) predictions and test data for accumulated
plastic strains: subgrade (74).

� �1 �2Sr��
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where �1 and �2 are the constants. For the nonassociative model, the harden-
ing function, �Q, is expressed as in Eq. (7.5).

As noted before, the behavior of a material under different stress paths is
different; for instance, Fig. 7.4 shows the ultimate envelopes under compres-
sion (C), simple stress (S), and extension (E) stress paths. Thus, the angles of
friction � (in � vs. 	n plots) corresponding to the ultimate slopes (�) in

 plots, for the three conditions, will be different. Hence, it is desir-
able to include stress points from the above stress paths in the evaluation of
� and �. However, if only compression tests are available, it may be assumed
that the angle of friction in compression (�C) and that in extension (�E) are
equal. Then, � and � can be found based on Eq. (7.13).

With the above considerations, a number of cases were analyzed in which
the following factors were considered:

• associative (�0-) model with five plasticity constants (�, �, n, a1, �1);
• nonassociative (�1-) model with six or seven constants, including

the preceding five plus one (�) or two (�1 and �2) constants;

FIGURE 7.35(B)
Comparisons between model (�0-cyclic hardening) predictions and test data for accumulated
plastic strains: base (74).

J2D J1�
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• straight and curved ultimate envelope with one (�) or two (� and
�1) constants [Eq. (7.15b)];

• constants found as average values from nine tests for ultimate
envelopes, five shear tests under different stress paths (CTC, TC,
and TE) or two tests (one CTC and one TE) or only one test (CTC)
with the assumption of �C � �E.

FIGURE 7.36
Comparisons between model (�0-cyclic hardening ) predictions and test data for accumulated
plastic strains: multiple-load permanent deformation test (74).

FIGURE 7.37
Triaxial test data for granite at different initial confining pressures, 	0 � 	3 (76, 77).
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TABLE 7.12

Parameters for Granite (77)(With 
Permission)

Parameter Value

E 6.67 �  MPa
� 0.26
� 0.038
� 0.75
N 8.30
a1 9.8 �

�1 0.72
R 18 MPa

FIGURE 7.38
Comparisons between model (�0) predictions and test data for granite (77).
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Table 7.13 shows material constants for various factors considered in the
parametric study.

Figure 7.39 shows comparisons between predictions and test data for yield
surfaces and the ultimate envelopes for the Badarpur sand (79). Overall, the
inclusion of the curved ultimate envelope provides better predictions (see
also below). For high mean pressure levels, e.g., in the case of high (earth)
dams, the ultimate envelope is curved and it would be appropriate to include
it in the model.

Figures 7.40 and 7.41 show comparisons between predictions and labo-
ratory data for the typical factors listed above. It can be seen from both fig-
ures that the nonassociative model, curved ultimate envelope, stress-
ratio-dependent nonassociative parameter, and constants determined
from two tests provide improved predictions. It may be noted, however,
that predictions even from one (CTC) test with �C � �E provide satisfac-
tory predictions.

Based on the above, it was concluded that the parameters for the �0- and �1-
model can be evaluated from two tests under CTC and TE paths and can be
estimated with one CTC test with the assumption �C � �E. Indeed, if a greater
number of tests are available, an improved quality of parameters is obtained. 
A formal procedure for the optimization of parameters in the DSC and HISS
models is described in Appendix II.

Example 7.15 Rockfill Material: Particle Size-dependent 
�1-Plasticity Model
Rockfill material involves particles of different sizes. Laboratory drained triaxial
tests on a rockfill materials with different particle sizes were reported by

TABLE 7.13

Material Parameters for Optimum Number of Tests (79) (With Permission)

Curved Envelope
Straight

Envelope Straight Envelope

Tests used —Nine tests for ultimate envelope
—Five tests for other plasticity 

parameters

—Two tests: 
one CTC 
one TE

— One CTC test
—�C � �E

Elasticity E � 150 MPa � 0.3

Plasticity
� 0.0702 0.0702 0.0698 0.0619
� �0.690 0.70 0.66 0.74
�1 0.00003 — — —
n 3.00 3.00 2.80 2.90
a1 31.66 � 38.5 � 36.64 � 31.31 �
�1 0.493 0.450 0.505 0.504
�1 0.402 0.400 0.42 —
�2 0.100 0.101 0.111 —
� — 0.400 — 0.271

�

10 4� 10 4� 10 4� 10 4�
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Varadarajan et al. (80). Table 7.14 shows the material parameters as a function
of the particle size (average diameter), Dmax, for materials used in the Ranjit
Sagar and Purulia dams. The (initial) elastic modulus was expressed as a non-
linear function of the (initial) mean pressure (	0) as (80, 81)

(15a)

where k and n� are parameters.
It can be seen from Table 7.14 that the parameters show consistent increas-

ing or decreasing trends with Dmax.
Figures 7.42 and 7.43 show typical comparisons between predictions by the

�1-model and laboratory data. The predicted yield surfaces (Fig. 7.42) compare
well with the test data for different values of Dmax. The stress–strain and vol-
umetric responses are also predicted very well by the �1-model (Fig. 7.43).
Note that the influence of the particle size can be included in the model by
expressing the parameters as functions of Dmax.

FIGURE 7.39
Comparisons between model predictions and test data for sand: yield surfaces (79)(with
permission).

Ei kpa
	0
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Example 7.16 Silicon Crystal with Dislocation: 
Disturbance Model
Dillon et al. (82) proposed a three-dimensional generalization of the constitu-
tive model by Haasen (83) for the characterization of thermomechanical
behavior of silicon crystals (ribbons) with dislocations. Figure 7.44 shows
stress–strain behavior (predicted by their model); it is affected by factors such
as (initial) dislocation density (N0), temperature (T ), strain rate , and
impurities such as oxygen and nitrogen.

The DSC model was used to characterize the behavior of the silicon crys-
tals, and a correlation was established between disturbance and dislocation
(see Eq. 3.25a, Chapter 3) (84). In the DSC, the RI behavior was simulated by
using a linear elastic model (Chapter 5) in which the elastic moduli were
expressed as (82)

(16a)

(16b)

FIGURE 7.40
Comparisons between model predictions and test data: parametric sensitivity analyses, TC
(	0 � 137.3 kPa) (79)(with permission).


̇( )

E 1.7 1011 2.771 104 T( )2pa����
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It can also be simulated using the �0-plasticity model. The disturbance func-
tion, Eq. (3.16b), was used and its values from the stress–strain data (Fig. 7.44)
were evaluated based on the following equation (Eq. 3.7):

(16c)

The parameters in Eq. (3.16b), h,  and s, were found using the procedure
described in Chapter 3 (Fig. 3.18). The parameters  and s were found to be
relatively constant under T, N0, and  and their average values were found
to be 1.354 and 1.20, respectively. The parameter h was found to be dependent
on T and N0 and was expressed as

(16d)

FIGURE 7.41
Comparisons between model predictions and test data: parametric sensitivity analyses, CTC
(	0 � 274.6 kPa) (79) (with permission).
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TABLE 7.14

Rockfill Materials Parameters (80) (with permission)

Material Constants

Ranjit Sagar Dam Material 
Dmax (mm)

Purulia Dam Material
Dmax (mm)

10 25 50 80 25 50 80

Elasticity
k 156.03 193.69 220.34 253.63 167.07 286.02 451.13
n� 0.5768 0.6386 0.6683 0.7146 0.8162 0.6550 0.4068
� 0.36 0.31 0.30 0.29 0.34 0.33 0.31

Ultimate
� 0.0577 0.0630 0.0781 0.0811 0.0619 0.0617 0.0615
� 0.71 0.72 0.73 0.74 0.72 0.72 0.72

Phase change, n 3 3 3 3 3 3 3
Hardening

a1 0.158E-3 0.722E-4 0.605E-4 0.985E-5 0.310E-4 0.850E-4 0.130E-3
�1  0.355 0.453 0.476 0.762 0.600 0.440 0.380

Nonassociative, � 0.20 0.25 0.22 0.22 0.23 0.20 0.17
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where h300 is the value of h at T � 300 K and  is the exponent; both are depen-
dent on N0 and were expressed as

(16e)

(16f)

FIGURE 7.42
Comparisons between predictions and test data for yield surface for typical values of Dmax

(80) (with permission).

FIGURE 7.43
Comparisons between predictions and test data for stress–strain and volume change responses
(80) (with permission).

n

h300 N0( ) 1.195 3.675 10�9
� N0��

n N0( ) 6.735� 2.577 10�9
� N0��
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Hence, the disturbance function was expressed as

(16g)

The DSC equations [Eq. (3.1)] were integrated to predict the laboratory
behavior under different temperatures, strain rates, and dislocation densities
(84). Typical results are presented in Figure 7.45(a) and (b), which show typical
comparisons between predictions and test data for two conditions: (a) T �
960%C, � 1.2 �   and N0 � 2 �   and (b) T � 1100%C, �
4.8 �   and N0 � 1.8 �   The correlation is considered to
be highly satisfactory.

Application of the DSC model for the softening and stiffening response
of silicon with high levels of N0 and oxygen impurities is presented in
Chapter 10.

FIGURE 7.44
Stress–strain data for silicon ribbon (82): (a) temperature, (b) strain rate, (c) initial dislocation
density.

D Du 1.0 1.0
�D

h N0, T( )
----------------------� 

 
1.254

�

�1.2

�


̇ 10�4 s�1, 104 cm�2 
̇
10�4 s�1, 105 cm�2.
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8.6.8 Finite-Element Equations
8.6.9 Other Models
8.6.10 Advantages of Overlay Models

8.7 Examples

In the theory of plasticity (covered in Chapters 6 and 7), we usually restrict
attention to quasi-static processes in which time-rate effects are not consid-
ered, and the time-dependent viscous (creep or relaxation) effects do not need
direct consideration. On the other hand, almost all materials under load expe-
rience time-dependent deformations to some extent. These deformations can
be elastic or recoverable, and plastic or irrecoverable. Thus, a general model
should allow for elastic and plastic, and viscous or creep deformations.

Figure 8.1 shows a schematic of a strain vs. time plot for a material subjected
to a constant stress. The instantaneous (elastic) response (0–a) is followed by
primary or elastic creep (a–b) during which, if unloading occurs (say at time t1),
elastic recovery (1–2) results, followed by delayed viscoelastic recovery (2–3).
If the loading continues after b, secondary creep begins, accompanied by per-
manent deformations (strains). Unloading at any time (during b–c), say at 4,
will involve elastic recovery (4–5), followed by viscoelastic recovery (5–6), and
then permanent (viscoplastic) strain. Tertiary creep (c–d), leading to eventual
failure, occurs after the secondary creep.

Some materials may experience a significant level of viscoelastic creep,
whereas others may experience predominant viscoplastic creep. Indeed, for
some materials both may need consideration. Such a general model to account
for the creep behavior (excluding tertiary creep) is referred to here as viscoelas-
ticviscoplastic (vevp). Before considering the general case, we first present the

FIGURE 8.1
Schematic of creep behavior.
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elastoviscoplastic (evp) model based on the theory proposed by Perzyna (1).
It has been used often, in the context of numerical procedures such as the
finite-element method, and has provided satisfactory solutions for a number
of engineering problems (2–15).

8.1 Elastoviscoplastic Model

Details of the elastoviscoplastic (evp) model according to Perzyna (1), includ-
ing factors such as identification of material parameters and their determina-
tion from laboratory tests, calibration and validation of the models, and
implementation in computer procedures, are presented in this section. Use of
the models to characterize the RI response in the context of the DSC is also dis-
cussed. Similar details for the viscoelastic (ve), elastoviscoplastic (evp), and vis-
coelastic viscoplastic (vevp) models as special cases of the multicomponent
DSC, or overlay concept, are given subsequently. Examples involving the solu-
tion of practical problems using computer procedures are given in Chapter 13.

Figure 8.2(a) shows a schematic of the elastoviscoplastic behavior according
to the Perzyna (evp) model. A constant stress, �0, is applied at time t � 0 and
held constant up to time . At time , the stress, �0, is removed. The material
experiences instantaneous elastic strain, , at t � 0. During the constant
application of �0, i.e., from time t � 0 to , viscoplastic strains occur ( ). When
the stress is removed, the elastic strain is recovered, and the material retains the
irreversible viscoplastic strain ( ).

The viscoplastic strains in the evp model vary with time from 0 to ; however,
its final value after sufficiently large time is the same as that in the inviscid plas-
ticity corresponding to a given yield function. This is illustrated in Fig. 8.2(b).
It shows that for a given stress increment, d�, the plastic strains from inviscid
plasticity are given by (Chapter 7)

(8.1a)

(8.1b)

If the stress increment is held constant under which creep deformation
occurs, the viscoplastic strains will grow with time (see ahead) and finally
reach the value of  equal to 

8.1.1 Theoretical Details

According to Perzyna’s theory, the total strain rate, , can be decomposed as

(8.2a)
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where

(8.2b)

or

(8.2c)

(8.2d)

FIGURE 8.2
Schematic of behavior: evp (Perzyna) model.
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where  is the stress vector,  is the elastic constitutive matrix for isotropic
material, Q is the plastic potential function (see Chapter 7); Q � F for associ-
ated plasticity, � is the fluidity parameter, � is the flow function, which is
expressed in terms of F, the overdot denotes time rate, and the angle bracket
� 
 has the meaning of a switch-on–switch-off operator as 

(8.3a)

where F0 is a reference value of F or any appropriate constant (e.g., yield stress,
�y , atmospheric pressure constant, pa) so as to render F/F0 dimensionless.

The flow function � can be expressed in different forms (1–14), e.g.,

(8.3b)

(8.3c)

where N and  are material parameters.

8.1.2 Mechanics of Viscoplastic Solution

The mechanism of the viscoplastic process, according to the foregoing (evp)
theory, can be explained by considering a creep test in which a constant stress
increment, , is applied to a material at time t � 0. The initial stress or the
stress at the end of the previous stress increment is ; see Fig. 8.3(a). Let us
consider that yield function F from the �0-model (Chapter 7):

(8.4a)

in which the hardening function, 
, is given by

(8.4b)

where �vp is the trajectory of viscoplastic strains given by

(8.4c)
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At time t � 0, when the stress increment is applied, let F0 denote the initial
yield surface corresponding to the state of stress, . This surface is often
called the static yield surface Fs (� F0). Under the constant stress, the material
experiences viscoplastic deformations, and the yield surface changes from Fs

to Fd due to the change in the stress, ��, which is called the overstress, and
the hardening function, 
. The modified surface, Fd, may be referred to as the
dynamic yield surface, and its value is greater than zero (Fd 
 0) because the
stress and hardening, which are changing with time, do not satisfy the con-
dition that Fd � 0. The viscoplastic strain is caused by the overstress and
grows with time; see Fig. 8.3(d). Its rate of increase, however, decreases con-
tinuously and it tends to zero at greater time levels. After sufficiently large
time, Fd approaches the equilibrium state at point B [Fig. 8.3(b)], when the
yield function FB � 0 is satisfied.

As the time passes, the total strain ( ) (elastic plus viscoplastic) accumu-
lates [Fig. 8.3(c)], leading to the accumulation of viscoplastic strain trajectory

FIGURE 8.3
Mechanics of viscoplastic solution (9, 10, 16).
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�vp, [Fig. 8.3(d)]. As a consequence, the value of the hardening function, 
,
changes (decreases) from the initial value of 
A to the final value of 
B [Fig. 8.3(e)],
during which the yield surfaces expand from A to B [Fig. 8.3(b)]. At B, the
steady condition is reached and the viscoplastic strain rate ceases. As t → �,
the solution from the viscoplastic model tends toward that from the inviscid
plasticity model [Fig. 8.2(b)].

8.1.3 Viscoplastic Strain Increment

The viscoplastic strain grows with time under the stress increment. It can be
evaluated with time by performing time integration as described next.

Consider the time increment �tn � tn�1 � tn in Fig. 8.4. Then the strain incre-
ment from time tn to tn�1 can be expressed as

(8.5a)

where 0 � � � 1. We obtain different time integration schemes depending on
the value of �; e.g., � � 0 leads to the simple Euler scheme, � � 0.5 to the semi-
implicit Crank–Nicolson scheme, and � � 1 to the fully implicit scheme (7–10).

The viscoplastic strain rate at step n � 1 in Eq. (8.5a) can be written (Fig. 8.4)
using the Taylor series expansion, and by ignoring higher-order terms, as

(8.6a)

where  is the stress increment from tn to tn�1 and Gn is the gradient matrix
given by

(8.6b)

FIGURE 8.4
Time integration in viscoplastic strains.
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Then, based on Eq. (8.2d), F, and �, Gn is derived as

(8.6c)

The substitution of Gn in Eq. (8.5a) leads to

(8.5b)

8.1.4 Stress Increment

The stress increment is written as

(8.7a)

where   � ,  is the strain-displacement transformation matrix, 
is the displacement vector, and  is the elastic constitutive matrix.

Now, substitution of   from Eq. (8.5b) in Eq. (8.7a) gives

(8.7b)

(8.7c)

where , and  is the time-dependent,
equivalent “elastic” strain.

8.1.5 Elastoviscoplastic Finite-Element Equations

In the evp approach, we solve the equations of equilibrium below, by per-
forming time integration for strains for a given load increment, (n � 1,
2,…); see Fig. 8.5. The finite-element incremental equations of equilibrium are
written as

(8.8a)

where V is the volume of finite element. Now, substitution of Eq. (8.7b) in Eq.
(8.8a) gives

(8.8b)
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or

(8.8c)

or

(8.8d)

where  is the tangent stiffness matrix given by

(8.9)

and  is the equivalent, residual, or pseudo-incremental load vector, given
by

(8.10)

Once the increment of displacement  is computed by solving Eq. (8.8d),
the increment of stress  can be found from Eq. (8.7b). Then the total quan-
tities at step n � 1 are found as

(8.11a)

 (8.11b)

FIGURE 8.5
Incremental loading in evp solution.
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Now the increment of viscoplastic strain, , is found using Eq. (8.7a):

(8.12a)

and the total quantity is

(8.12b)

Then Eq. (8.6a) is used to evaluate the viscoplastic strain rate for the time
interval �tn [Fig. (8.4)]. When the strain rate becomes small, as in Fig. 8.3, the
time integration process is stopped. The next load increment, , is
applied and the process is repeated.

8.1.6 One-dimensional Formulation of Perzyna (evp) Model

The rheological model for the uniaxial case is shown in Fig. 8.6 (7, 16). The spring
and dashpot provide for (linear) elastic and viscous responses, respectively. The
slider provides the plastic yielding response depending on the plasticity model
(F) adopted (Chapters 6 and 7). Under a given stress (increment), �, at time t � 0,
the instantaneous elastic response, , is given by

(8.13)

where E is the elastic modulus of the linear spring. Note that at time t � 0, the
dashpot and the slider are not operational; however, for t 
 0, the dashpot
and the slider become operational. The slider will move only after the stress
in it, �s, becomes greater than the yield stress, �y. The excess or overstress, �d,
in the dashpot is given by

(8.14)

FIGURE 8.6
Elastoviscoplastic (evp) model.
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The initiation of viscoplastic strains will take place after the yield stress, �y ,
is induced in the slider. Hence, the stress, , for linear strain-hardening
response (Fig. 8.7), during which viscoplastic strains occur, is given by

(8.15)

where H� is the slope of the linear strain-hardening part of the stress–strain
curve. Then the stress in the slider is given by

 (8.16)

Now the total strain, �, is given by

(8.17)

where  is the elastic strain, and the stress in the dashpot, �d, is given by

(8.18)

where � is the coefficient of viscosity and t is the time. Before yielding,  � 0,
therefore, �d � 0 [Eq. (8.18)], and hence �s � � [Eq. (8.14)].

Substitution of Eqs. (8.15), (8.16), and (8.18) in Eq. (8.14) gives

(8.19)

FIGURE 8.7
Elastic linear, strain-hardening, stress–strain behavior: uniaxial case (7, 16) (with permission).
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and substitution of , Eq. (8.17), with Eq. (8.13), in Eq. (8.19) leads to

(8.20a)

which represents a first-order ordinary differential equation for the time-
dependent relation between stress and strain. Equation (8.20a) can be written
in terms of the fluidity parameter, �, as

(8.20b)

where � � 1/�.

(8.21)

Comparing Eqs. (8.21) and (8.20b), we have

(8.22)

Here, � � (�y � H� ) denotes the overstress that causes viscoplastic strains;
in other words, in this model, the viscoplastic strain rate is defined uniquely
in terms of the overstress.

We can obtain the closed-form solution to Eq. (8.20a) for a constant-applied
stress �. Equation (8.20a) can now be written as

(8.23)

The solution to Eq. (8.23) is given in (7, 16) as

(8.24)

where H� 
 0. Figure 8.8(a) shows a schematic of the solution in Eq. (8.24). It
shows that the instantaneous elastic strain,  � , will be followed by the
time-dependent viscoplastic strains, whose limiting value will be (� � �y)/H� as
t → � [Eq. (8.24)], which is the same as the plastic strain from inviscid plasticity.

For an elastic perfectly plastic material (H� � 0), the solution is obtained by
using l’Hospital’s rule such that H� → 0 (7):

(8.25)
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Figure 8.8(b) shows a plot of the solution, Eq. (8.25). It can be seen that for
the perfectly plastic material, the steady-state condition for  is not reached,
and  can continue indefinitely at a constant strain rate.

It may be noted that the model in Eq. (8.24) for a strain-hardening material
leads to the equilibrated or steady-state viscoplastic strain, which is the same
as the corresponding plastic strain from the inviscid plasticity (Chapter 7)
[Fig. 8.2(b)]. Thus, the Perzyna model provides the timewise variation of the
irreversible or plastic strain; however, its final magnitude is the same as that
from the plasticity model based on the given yield function, F.

Details of the one-dimensional model for stress relaxation are given in
Example 8.10.

FIGURE 8.8
Responses of evp model: uniaxial case.
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8.1.7 Selection of Time Step

The robustness and reliability of the solution based on the time integration
scheme, Eq. (8.5), depends on the selection of the appropriate size of the time
step, �t. For � � 0.5, it has been shown [Hughes and Taylor (17)] that the scheme
in Eq. (8.5) is unconditionally stable. However, stability may not necessarily
imply accuracy of the solution, and it thus becomes necessary to limit the size of
the time step.

The size of the time step is affected by a number of factors such as material
properties and strain rate. An empirical relation between the time step size
and strain rate proposed by Cormeau (2), Zienkiewicz and Cormeau (3), and
Dinis and Owen (18) for the explicit integration is given by

(8.26)

where � is a problem-dependent parameter whose value can be in the range
0.01 � � � 0.15. It is often economical to vary the time step size during the
time integration. One such empirical formula is given by Zienkiewicz and
Cormeau (3):

(8.27)

where 1.2 � �0 � 2. Owen and Hinton (7) have given time-size criteria for var-
ious yield functions such as Tresca, von Mises, and Mohr–Coulomb for the
associated flow rule.

8.2 Disturbance Function

The DSC model can be developed using the constitutive incremental equations
for the evp model so as to characterize the RI behavior. Figure 8.9(a) shows a
schematic of stress–strain behavior from a creep test in which increments of
stress are applied at a slow rate, and the steady viscoplastic strains are measured
under the constant values of increments. Such a behavior is referred to as a static
response. The hardening curve in Fig. 8.9(a) shows the locus of the stresses and
steady-state strains, which are the same as that for inviscid plasticity response.
The observed (a) stress–strain response, Fig. 8.9(a), may exhibit degradation and
softening. Then the static hardening response can be treated as RI, and the FA (c)
response can be identified on the basis of the asymptotic stress states (Chapter 4).
The disturbance, D, can now be defined as (Chapter 4)

(8.28a)
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where  denotes a measure of stress such as � or ,  is the observed
stress, and  is the FA stress.

For cyclic (repetitive) loading [Fig. 8.9(b)], the disturbance treated as the
function of �(N), where N is the number of cycles, can be expressed as

(8.28b)

where �p is the peak stress for a given cycle N. D in Eq. (8.28b) can be
expressed in terms of a viscoplastic (deviatoric) strain trajectory, Eq. (8.4c). In
the case of cyclic loading, the RI behavior can be simulated using the inviscid
plasticity model, say, �0,Chapter 7, by using the initial and monotonic
response of the first cycle, extended beyond the peak point; see Fig. 8.9(b).

FIGURE 8.9
Disturbance for creep models.
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Now the observed stress increment, , can be expressed as

(8.29)

where  is the intact viscoplastic stress increment as given in Eq. (8.7b). If
it is assumed that the strains (t) [Eq. 8.7(c)] in the RI and FA parts are
equal, Eq. (8.29) can be written as

(8.30a)

(8.30b)

where  is the constitutive matrix for the FA response and will depend on
the simulation used (Chapter 4). For example, for the constrained-liquid
assumption,  in Eq. (8.30) will specialize to Eq. (4.19) in Chapter 4.

8.2.1 Finite-Element Equations

The equilibrium equations (8.8a) can now be written as

(8.31)

Substitution from Eq. (8.30) in Eq. (8.31) and the use of Eq. (8.7b) leads to

(8.32a)

or

(8.32b)
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and  is the equivalent or residual load vector including the effect of dis-
turbance.

8.3 Rate-Dependent Behavior

The behavior of most engineering materials depends on the rate of loading
(Fig. 8.10), which is often defined by strain rate, , or displacement rate, 
The static response refers to the behavior under a slow rate of loading. As the
loading rate increases, the material exhibits stiffer response and higher ulti-
mate or failure strengths; Fig. 8.10(a) and (b) show schematics of such behav-
ior at a given initial (continuing) stress or mean pressure. Hence, there exists
a unique ultimate envelope corresponding to each strain rate. It is possible
that a material may exhibit hardening response under static loading. How-
ever, if it is loaded under variable strain rates (under dynamic loading) in
which the strain rate decreases after an increasing strain rate, the material
may exhibit strain softening behavior (5) [Fig. 8.10(c)].

FIGURE 8.10
Rate-dependent behavior (5). ©1984 John Wiley & Sons Ltd. Reproduced with permission.
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The evp model can be used for the strain rate-dependent behavior. In this
case, the dynamic yield surface, Fd, will depend on the rate of loading. In other
words, if the same stress increment is applied at different rates, the dynamic
yield surface, Fdi (i � 1, 2, …) [Fig. 8.10(d)], � will be different. However, the
procedures for the evaluation of the viscoplastic strain and for the conver-
gence of Fd → 0 to the equilibrated yield surface (Fs � 0) for the stress incre-
ment will be essentially the same as before.

8.4 Parameters for Elastoviscoplastic (evp) Model

The procedures for finding the elasticity and plasticity constants have been
described in Chapters 5 to 7. For example, if the �0-model in the HISS family
is used, the parameters involved are those discussed in Chapter 7. Here we
consider the parameters required for the viscous behavior in the evp model.

8.4.1 Determination of Parameters

There are two parameters, � [Eq. (8.2d)] and N or  [Eq. (8.3)], that need to
be determined from appropriate laboratory tests.

Fluidity Parameter, �. Squaring both sides of Eq. (8.2d) and multiplying
them by 1�2 leads to

(8.33a)

or

(8.33b)

where  is the second invariant of the viscoplastic strain rate tensor, .
Therefore,

(8.34a)

where

(8.34b)
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 is the vector of deviatoric stresses, and the invariant, I2, is given by

(8.34c)

in which �ij is the strain tensor.
The value of a  in Eq. (8.34a) can be found for various points during a creep

test. Although the applied overstress,  is constant in a creep test, the yield
function (Fd 
 0) changes during the creep behavior because the viscoplastic
strain rate, Eq. (8.6a), leads to changes in the hardening function, 
, Eq. (8.4b),
with the viscoplastic strain trajectory, �vp, Eq. (8.4c). As the strains are meas-
ured during the test, the values of  can be found for various points.

The flow function, �, as power law is given by Eq. (8.3b) as (2, 3, 7–12)

(8.35a)

Now Eq. (8.34a) is written as

(8.35b)

Therefore,

(8.35c)

Variation of a vs. F/F0 is shown (schematically) in Fig. 8.11(a), whereas in the
ln–ln plot it is shown in Fig. 8.11(b). The slope of the (average) straight line
gives N, and the intercept when F/F0 � 1 gives �.

Other forms of the flow function are possible, e.g., the exponential form is
given by (2–4, 7–10, 16) [Eq. (8.3c)]:

(8.36a)

Then Eq. (8.34a) leads to

(8.36b)

Therefore,

(8.36c)
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The values of � and  are found from a plot of ln� vs. F�F0 evaluated at dif-
ferent points on the creep curve.

8.4.2 Disturbance Parameters

Procedures for the determination of the disturbance parameters, A, �, and Du,
are described in Chapters 2 and 4. For quasistatic (one-way loading and
unloading), results such as in Fig. 8.9(a) can be used with Eq. (8.28a). For
cyclic loading [Fig. 8.9(b)], D can be found using Eq. (8.28b). Consider the dis-
turbance given by (Chapter 3)

(8.36c)

Here, Du can be found using Eq. (8.28a) or (8.28b) in which , is the residual
or saturation stress after a large number of cycles. Often, it is appropriate to
use Du � 1.0. The values of D at different stress levels are found, and � is
found from viscoplastic strains at those points. Then plot of ln[�ln(1 � D)]
vs. ln(�vp) provides the values of A and Z (Chapter 3).

FIGURE 8.11
Determination of creep parameters.
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8.4.3 Laboratory Tests and Examples

One-dimensional. Usually, results are available from tests with one-
dimensional constant stress and�or constant strain loading. For instance,
steady-state (uniaxial) creep strain rate ( ) vs. uniaxial stress (�1) results are
often available. Figure 8.12(a) shows such temperature-dependent data for a
60�40 (Sn/Pb) solder (11, 19), which can be used to find approximate values of
� and N. Here, because only one component of strain is available, Eq. (8.2d)
reduces to

(8.37a)

which leads to

(8.37b)

The values of F can be found from Eq. (8.4a) as the state of stress and other (plas-
ticity) material parameters are known. Here, F0 � pa is used. Typical plots of
ln( ) vs. ln (F�F0) for different temperatures are shown in Fig. 8.12(b) (11); the
temperature dependence is discussed later. The slope of an average line gives the
value of N and the intercept along ln( ) for F/F0 � 1, that is, ln(F/F0) � 0 gives
the value of �.

Shear Tests. For geologic and other materials, shear tests are often per-
formed, in which the specimen is first consolidated under the K0 condition,
i.e., lateral strain � 0. After the consolidation, the specimen is subjected to a

FIGURE 8.12
Plots of measured (a) strain rate vs. stress (19), and (b) ln(F/F0) vs. ln for determination
of � and N (11).
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constant effective normal stress,  � , and a constant shear stress, �, is
applied under undrained conditions; that is, the fluid is not allowed to drain.
The shear strains are measured with time under the constant �. For this un-
drained case, the vertical strain, �1, is zero. Then the viscoplastic strain rate
tensor is given by

(8.38)

FIGURE 8.12
(Continued).
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where  is the rate of measured shear strain. Thus, the value of  can be eval-
uated using �2 as  in Eq. (8.34c). Now, Eq. (8.34a) is expressed as (9-11):

(8.39)

The value of  in Eq. (8.34b) is found by assuming that the second term
is predominant, and the first and third terms can be ignored. Hence,

(8.40a)

(8.40b)

and

 (8.40c)

If it is assumed that after a long time,  � , then J2D � . Now the results
are plotted in terms of ln(�) vs. ln(F�F0), where F0 � pa. Figure 8.13 shows a typ-
ical plot for a clay (9, 10). The slope of the average line gives N and the inter-
cept along ln(�) for F/F0 � 1 leads to the value of �.

FIGURE 8.13
Determination of creep parameters from shear test for soil (9, 10).
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8.4.4 Temperature Dependence

The temperature (T) dependence can be introduced in the viscoplastic model
by writing Eq. (8.2d) for associated flow (Q � F) as

(8.41)

where  is the thermoviscoplastic strain rate tensor, F (�ij, 
, T ) is the tem-
perature-dependent yield function, and �(T) is the temperature-dependent
fluidity parameter.

As discussed earlier, the rate of increase in the thermoviscoplastic strain is
affected by the excess stress above the yield stress as well as by the tempera-
ture, which may result in thermal degradation. Assuming that the viscous
behavior is exhibited after the passage to the transient thermoviscoplastic
state and that it is not significant in the elastic region, the total strain rate, ,
can be expressed in terms of the thermoelastic strain rate, , thermoviscoplas-
tic strain rate, , and the elastic contribution due to the coefficient of ther-
mal expansion (
T) effect as

(8.42a)

or

(8.42b)

The constitutive stress–strain equation can now be written as

(8.43)

The thermoviscoplastic strain rate at time step n � 1 is now expressed using
Taylor series (ignoring higher-order terms) as

(8.44a)

(8.44b)

where  is the stress increments and  and  are the gradient matrices
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at step n, given by

(8.45a)

and

(8.45b)

where

and

Here, the exponent, N, can depend on the temperature, T.

8.5 Multicomponent DSC and Overlay Model

The evp model based on Perzyna’s theory simulates the viscoplastic response,
particularly the time-dependent plastic response during the secondary creep
regime (Fig. 8.1). However, in general, a material may experience both vis-
coelastic and viscoplastic responses, which include creep deformation during
both the primary and secondary creep regimes. Hence, it is appropriate to
develop and use a model that can simulate the combined response as closely
as possible. In the following, we develop a model, called viscoelastic-visco-
plastic (vevp), that can allow consideration of the combined response. Vis-
coelastic (ve) and elastoviscoplastic (evp) models arise as special hierarchical
options of the vevp model.

8.5.1 Multicomponent DSC

In the basic DSC (Chapters 2 and 4), we first considered an element of the
same material, which is composed of two material parts in the RI and FA ref-
erence states. During deformation, the extents of the RI and FA parts change,
which is defined through the disturbance, D. In Chapter 2, we also developed
the DSC for a material element composed of more than one or two, or a
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higher number of, different materials. In that case, the behavior of the com-
ponent materials provide reference state responses. Then the observed stress,

, can be expressed as

(8.46)

where A1, A2, …, An are the areas of the components (Fig. 8.14), with total area
A � �Ai (i � 1, 2, …, n), and , , …,  are the corresponding stresses. For
convenience, we assume that the width of the material element is constant
and equals b (Fig. 8.14). Equation (8.46) can be written as

(8.47)

where di � Ai�A is the ratio of the area of component i to the total area A; here,
�di � 1. Note that Eq. (8.47) is similar to that for the single material element
with RI and FA parts in which the disturbance, D, is the ratio of the FA area
to the total area, i.e., D � �A. In the basic DSC, Di (i � 1, 2) varies with

FIGURE 8.14
Multicomponent DSC.
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deformation, while in the multicomponent DSC, di(i � 1, 2, …, n) can be con-
stant. Equation (8.47) can also be expressed as

(8.48a)

or

(8.48b)

where b � width of the element and t1, t2, . . . , tn (� ti/�ti) are the nondimen-
sionalized thicknesses of the components of the material element (Fig. 8.14);
hence, �ti � 1. Then each component (i � 1, 2, . . . , n) of the material element
can be characterized using different models such as elastic, viscoelastic, and
elastoviscoplastic.

The three-dimensional incremental form of Eq. (8.48) can be written as

(8.49a)

(8.49b)

As indicated before, di do not change and hence, ti also do not change during
small deformation. Equation (8.49a) can now be written as

(8.50)

where (m � 1, 2, …, n) are the (tangent) constitutive matrices for the com-
ponents, and (m � 1, 2, …, n) are the corresponding incremental strain
vectors, which, in general, can be different. If it is assumed that the strains in
all components are equal (� ), Eq. 8.50 becomes

(8.51a)

or

(8.51b)

where  is the equivalent constitutive matrix for the material element.
Figure 8.14(b) shows a symbolic representation of the multicomponent DSC
model from Eq. (8.51). Each component unit (1, 2, …, n) can be characterized
using elastic, viscoelastic, elastoviscoplastic, or any appropriate model. Thus,
it can provide a hierarchical framework from which elastic (e), viscoelastic (ve),
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elastoviscoplastic (evp), and viscoelasticviscoplastic (vevp) models can be
extracted. Note that the evp model can be the same as that discussed earlier,
based on the Perzyna theory. The special form, Eq. (8.51), with compatible
strains of the multicomponent DSC model, Eq. (8.50), is the same as the over-
lay or mechanical sublayer model proposed and used in (7, 20–22).

A rheological representation of the overlay model considered here is shown
in Fig. 8.15(b), while that for the elastoviscoplastic (evp-Perzyna) model is
shown in Fig. 8.15(a), as a special case. By adopting a suitable number of over-
lays with different thicknesses such that �ti(i � 1, 2,…,k) � 1, and by assigning
different material properties such as elasticity (E, ν), plasticity (perfectly plas-
tic, �y; �0-plasticity, �, �, a1, �1, n, 3R, etc.), and viscous (�, N) to different rheo-
logical units, a wide range of special versions can be obtained. Table 8.1 shows
a number of possible versions, whose explanations follow.

Elastic (e). For the single unit, Fig. 8.15(a), consider one overlay with thick-
ness t � 1. The spring and dashpot are assigned elastic (E, ν) and viscous (�, N)
parameters, respectively, while the yield stress, �y , in the slider, as per von
Mises, perfectly plasticity model is assigned a very high value, of the order of

 (Table 8.1). Then, as �y is very high, the dashpot will not be operational,
and only the elastic spring will operate, which will result in an elastic response.

TABLE 8.1

Specializations of Overlay Model

Specialization
Plasticity

Model
No. of 

Overlays Thickness Parameters

Elastic (e) von Mises 1 1.0 E, ν, �, N, and very high �y
Maxwell  von Mises  2  0.5, 0.5 E1, ν1, �1, N1, �y1 � 0

E2, ν2, �2, N2, �y2 � 0
Viscoelastic (ve)  von Mises  2  0.5, 0.5 E1, νv1, �1, N1, �y1 � 0

E2, ν2, �2, N2, �y2 �

very high
Elastoviscoplastic
(evp) (Perzyna 
type)

 Any  1  1.0 E, ν, �, N, F

Viscoelasticvisco-
plastic (vevp)

 von Mises 0.5 E1, ν1, �1, N1, �y1 � 0

Any 0.5 E2, ν2, �2, N2, �y2, or F

FIGURE 8.15
Overlay model and elastoviscoplastic specialization.
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Maxwell Model. Here, two units with thickness each equal to 0.50 can be
used. Then adoption of the yield stress, �y1 � �y2 � 0.0, leads to two parallel
Maxwell models with spring and dashpot in series.

Viscoelastic (ve). Consider the two units from Fig. 8.15(b), with two over-
lays with t � 0.5 each. Units 1 and 2 are assigned the properties as shown in
Table 8.1. Because of the very high value of �y2, the dashpot in unit 2 will not
operate, and because �y1 � 0 in unit 1, only the spring and dashpot will oper-
ate; the effective model is shown in Fig. 8.16(a). At time t � 0, under a stress of
�0, instantaneous elastic strain,  will occur because of the springs in units 1
and 2, given by

(8.52)

For time t 
 0, viscoelastic deformations will occur due to the operation of
the dashpot in unit 1 [Fig. 8.16(b)]. Then, if the stress is removed, the elastic
strain will be recovered first instantaneously, and then � → 0, as t → �, because
the elastic spring in unit 2 will force the dashpot to return to the original state.
Thus, this specialization will yield viscoelastic response.

Elastoviscoplastic (evp)—Perzyna Model. We consider one unit, Fig. 8.15(a),
and one overlay with thickness t � 1. The elastic (E, ν), viscous (�, N), and �y

(classical plasticity) or F (e.g., �0-model) are assigned to the spring, dashpot,
and the slider, respectively (Table 8.1).

At time t � 0, the dashpot will not be operational; hence, the instanta-
neous elastic strain,  � �0/E, will occur. Then, for time t 
 0, the dashpot
will be operational, and viscoplastic strains will occur. On unloading,  will
be recovered, and the viscoplastic strains ( ), [Fig. 8.17(b)], due to the
slider (�y or F) [Fig. 8.17(a)], will remain. The final viscoplastic strain will be
equal to that from inviscid plasticity governed by the yield function, F. In
other words, the evp-type model will give the timewise variation of the
plastic strains, but the final magnitude of the viscoplastic will be equal to
the plastic strain from inviscid plasticity.

FIGURE 8.16
Viscoelastic model.
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Viscoelasticviscoplastic (vevp) Model. Consider the two units in the
model, Fig. 8.15(b), and assume two overlays, each with thickness � 0.5. The
parameters are assigned as shown in Table 8.1. The resulting model is shown
in Fig. 8.18(a).

At time t � 0, only the springs will deform as the dashpots are not opera-
tional. The instantaneous elastic strain  [0–A, Fig. 8.18(b)], will be given by
Eq. (8.52). Then, for time t 
 0, the dashpot in unit 1 will operate first, as the
slider in unit 2 has nonzero yield stress. This will lead to viscoelastic deforma-
tions. Now for later time t 
 0, when the yield condition in slider 2 is reached,
the dashpot in unit 2 will also become operational. If continuous yielding (e.g.,
�0-model) is considered for the slider, both the viscoelastic and viscoplastic
deformations can occur simultaneously during A–B. Upon unloading,  will
be recovered first, then the viscoplastic strain, , will be recovered, and
finally the viscoplastic strain will remain [Fig. 8.18(b)].

FIGURE 8.17
Elastoviscoplastic model.

FIGURE 8.18
Viscoelasticviscoplastic model.
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8.5.2 Disturbance Due to Viscoelastic and Viscoplastic Creep

Disturbance or damage in many materials such as asphalt concrete can result
due to both the viscoelastic and viscoplastic creep. Then the disturbance (D)
can be expressed in terms of the total trajectory of creep strains, �t, or energy
(work), W, as

(8.53a)

(8.53b)

where  and  are the vectors of viscoelastic and viscoplastic strains,
respectively, and  is the stress vector. Then D can be expressed as

(8.54)

8.6 Material Parameters in Overlay Model

The parameters in the overlay models, Table 8.1, need to be determined from
appropriate creep and�or relaxation test data, e.g., uniaxial, shear, triaxial,
and�or multiaxial. The procedure entails suitable adjustment of parameters
and optimization schemes such that the predictions from the equations gov-
erning the response of overlay models fit the test data. We next consider details
of procedures for typical overlay models.

8.6.1 Viscoelastic (ve) Overlay Model

Consider the model in Fig. 8.16(a). It is required to determine four elastic (E1,
ν1; E2, ν2) and two viscous (�1, N1) parameters. They can be found on the basis
of creep test data [Fig. 8.16(b)]. We first derive the equation governing the
response of the overlay model.

Consider first the uniaxial (or triaxial) loading response. Let �0 be the applied
stress, which is held constant, and let t1 and t2 be the thicknesses of unit 1 and
unit 2, respectively. Then equilibrium of forces gives

�1t1 � �2t2 � �0(t1 � t2) (8.55a)

Here, t1 � t2 � 1. Therefore,

(8.55b)
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At time t � 0, the dashpot is not operational; hence, the strain �0 is given
by

(8.56)

Now, with respect to unit 1:

(8.57a)

where  and  are the strains in the spring and dashpot, respectively.
Hence,

(8.57b)

where �1 is the stress in unit 1.
With respect to unit 2:

(8.58a)

Hence, using Eq. (8.55b),

(8.58b)

Combining Eqs. (8.57b) and (8.58b), we have

(8.59)

the solution of which can be obtained as

(8.60)

where a � E1E2t2, b � E1t1 � E2t2.  Therefore,

(8.61a)
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and from Eq. (8.55b):

(8.61b)

Substitution of Eq. (8.61a) in Eq. (8.58b) gives

(8.62a)

Integration of Eq. (8.62a) leads to the solution for the overlay strain, �, as

(8.62b)

As indicated before, the parameters E1, E2, and � can be found by their suit-
able adjustment, such that the computed strains � for given �0 fit the observed
response. They can be obtained by using the following simplified procedure:

For t � 0, Eq. (8.62b) gives

(8.63a)

As t → �, Eq. (8.62b) gives the ultimate strain, �u, as

(8.63b)

The values of �0 and �u can be obtained from the measured response [Fig.
8.19(a)]; the latter can be adopted as the asymptotic value. Then the solution
of Eq. (8.63) provides the values of E1 and E2.

Now the gradient of  at t � 0 can be measured approximately
from Fig. 8.19(a) as

(8.64a)

where �t � 1 and �t  are values of strains near t � 0, and �t is a (small) time step.
Substitution of Eq. (8.64a) in Eq. (8.62a) gives

(8.64b)

Substitution of E1 and E2 computed above in Eq. (8.64b) gives the value of �.
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8.6.2 Poisson’s Ratio

The values of ν1 and ν2 can be found if multi- (two-) dimensional test data are
available. For instance, if the values of lateral strains �2 � �3 are available from
cylindrical (unconfined) triaxial tests, the volumetric strain is given by

�v � �1 � 2�3 (8.65a)

Then the bulk modulus, K, which may be assumed to be independent of
time, and the same for both units, can be calculated as

(8.65b)

where �1/3 � p is the mean pressure. Then ν1 and ν2 can be found as

(8.66a)

FIGURE 8.19
Determination of parameters for overlay models.
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The parameter N for unit 2 can be assumed to be unity. This implies linear
relation between the strain rate, , and the stress, �1, in the dashpot:

(8.67)

where �1 is the stress in unit 1. An example for the determination of the
parameters is given subsequently.

8.6.3 Elastoviscoplastic (evp) Overlay Model

The parameters in this model are shown in Fig. 8.17(a). They are found by
using the procedures described in Chapters 5 to 7 for elasticity and plasticity
parameters (E, ν; �y for classical models such as the von Mises, and �, �, n,
a1, �1, R for the HISS-�0 model). Procedures for finding the creep parameters
(�, N) are given earlier in this chapter.

8.6.4 Viscoelasticviscoplastic (vevp) Overlay Model

The model and parameters are shown in Fig. 8.18(a). Assume that the signifi-
cant viscoplastic strains will not occur during early times. This will approxi-
mately be the situation if the irreversible strains do not occur until the yield
stress, �y, in the slider is exceeded. In the case of the continuous yield plasticity
models such as the HISS-�0, irreversible strains can occur from the beginning;
however, they can be assumed to be small. In that case, parameters (E1, ν1, �1,
N1, E2, ν2) can be adopted to be the same as those for the viscoelastic model.

The parameters �2, N2, and �y(F) can be adopted to be the same as in the elas-
toviscoplastic (evp) model. Indeed, it will be desirable and often necessary to
use these parameters and backpredict the test behavior to verify that a satis-
factory fit is obtained between the predictions and test data. Brief details of the
governing equations for the vevp model, which can be used for the predic-
tions, are given below.

Consider that a stress, �0, is applied and then held constant. The deforma-
tions in the vevp overlay can be considered to occur in two stages. When the
stress, �2, in unit 2 is less than the yield stress, �y , in the slider (or F � 0), the
model will give viscoelastic (ve) response. When the stress reaches �y at
time � , the slider will yield; then both viscoelastic and viscoplastic strains
will occur.

For the viscoelastic stage, the solution for strain, �, will be given by Eq.
(8.62b). At t � �, the stress in unit 1, �1 � 0; hence

�0 � t2�2 (8.68a)

Therefore, the limiting condition when the slider will yield can be expressed
as

�0 
 t2�y (8.68b)

�̇ d

�̇ d ��1
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Now, at t � , the following relations will hold:

(8.69a)

where  is the strain in the overlay at time � . Hence,

(8.69b)

Then by using the following equations:

(8.70a)

(8.70b)

(8.70c)

the solution for � for time �  is obtained as

(8.71)
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8.6.5 Parameters for Viscoelastic Model

Consider the creep test data for Indiana limestone reported by Hardy et al.
(23) and Goodman (24). Details of the applied stress increments (��1) are
given below. It was reported that for increments 1 to 3, there was insignificant
time dependence (24); hence, results for only increments 4 to 7 are considered
in Table 8.2.

Axial strain vs. time curves for the typical stress increments, 4, 6, and 7,
which are used here to evaluate the parameters, are shown in Fig. 8.20.

8.6.5.1 Increment 4; ��1 � 699 psi

The values of strains and the derivative at t � 0 are

TABLE 8.2

Creep Test Data for Indiana Limestone (24)

Increment
Stress Increment 

��1, psi
Initial Axial Strain 

�0 �
Initial Lateral Strain 

�0 �

4 699 125 �33
5 782 150 �39
6 781 147 �41
7 782 142 �42

© John Wiley & Sons Ltd. Reproduced with permission.

FIGURE 8.20
Creep test data for Indiana limestone (24). © John Wiley & Sons Ltd. Reproduced with
permission.
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Here the value of strain after t � 0.25 min was measured to be about 127 #
 in/in. Now, using Eqs. (8.63a), (8.63b), and (8.64), we can evaluate E1, E2,

and � as follows:

Here the applied stress increment is 699 psi and t1 � t2 � 0.50. Solution of
the above equations gives

Now,

Therefore, the viscosity coefficient, �, of the dashpot is

8.6.5.2 Verification

Let us consider two typical time levels, t � 1.0 and 4.0 minutes, and use Eq.
(8.62b) to compute the corresponding strains by using E1, E2, and �.

Therefore,
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For t � 1.0 min,

For t � 4.0 min,

These computed values compare well with the corresponding measured
values of 131 and 138 #  in.�in., respectively (Fig. 8.20).

8.6.5.3 Increments 5, 6, and 7

Increment 5:

Increment 6:

Increment 7:

The values of E1, E2, and � for increments 5, 6, and 7 were found using the
foregoing procedure.

Bulk Modulus. The bulk modulus, K, is found using Eq. (8.65b), where
��1/3 � p is the mean pressure and �v � �0 � 2�3, (Table 3.2). Their values for
increments 4 to 7 were found to be 3.9, 3.2, 4.0, and 4.5 #  psi, with the
average value � 3.9 #  psi. Then the Poisson ratios, v1 and v2, are found by
using Eq. (8.66). The values of the parameters are listed in Table 8.3.

It can be seen that the values of the parameters vary with the stress incre-
ment; E1 and E2 increase and decrease, while v1 and v2 decrease and increase,
respectively. The values of � and K do not vary significantly. If, as a simplifi-
cation, single values of the parameters are desired, it may be necessary to opti-
mize them such that the predictions provide acceptable correlation with the
test data (Fig. 8.20).
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8.6.6 Physical Meanings of Parameters

In the vevp model, Eeq � E1t1 � E2t2 and (�1, N1) denote delayed elasticity
moduli, and (�2, N2, F) denote delayed viscoplastic parameters.

8.6.7 Disturbance Parameters

Figure 8.21(a) and (b) show schematics of stress–strain and volume change
behavior; the curves represent the locus of equilibrated strains for various
stress increments. As explained earlier, the disturbance can be defined based
on the stress–strain response or volumetric response (Fig. 8.21).

TABLE 8.3

Parameters for Viscoelastic Overlay Model: Indiana Limestone

Increment E1 �  psi E2 �  psi v1 v2

�

1/psi min K psi N

4  1.00  10.00  0.46  0.075  6.67  
5  1.83  8.60  0.42  0.132  5.80 3.9 # 1.00 
6  2.60  8.00  0.39  0.160  5.96 1/psi min
7  3.70  7.30  0.34  0.190  6.32  
5  1.83  8.60  0.42  0.132  5.80

FIGURE 8.21
Schematic of tests for parameters in overlay models.
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8.6.8 Finite-Element Equations

The finite–element equations (8.31) can now be written for the overlay
models using Eq. (8.49b) as

(8.72)

If there is no disturbance (microcracking and degradation), the incremental
stress, , can be expressed as in Eq. (8.7c). If disturbance is included, 
can be expressed as in Eq. (8.30). Then the solution procedure involving time
integration will be similar to that described earlier in this chapter.

8.6.9 Other Models

Many models have been proposed for the analysis of the creep behavior of engi-
neering materials; these include the classical models (25–28), the endochronic
models (29, 30), and the viscoplastic theory based on the overstress (VBO) mod-
els (31, 32). In the VBO approach, the observed stress–strain–time response is
characterized on the basis of the equilibrium and kinematic (reference) responses
as components of the behavior. The difference between the observed and equi-
librium responses is considered as the “overstress,” which causes viscous or
creep deformation similar to that in Perzyna’s viscoplasticity model described in
this chapter. It is felt that there may be similarities between the VBO and DSC
models in that the observed behavior is considered to be composed of the behav-
ior of the deforming materials at certain reference states. 

8.6.10 Advantages of Overlay Models

The overlay models offer a number of advantages compared to the classical
viscoelastic and viscoplastic formulations based on the closed-form solutions
of governing equations (25–28). They are the following:

1. The classical models are often complicated and may not be suitable
for implementation in computer procedures and for solving prac-
tical engineering problems. On the other hand, the elastoviscoplas-
tic and overlay models are found to be more appropriate for the
implementation and practical problems (1, 2, 5, 7, 13).

2. The material parameters (Table 8.1) have physical meanings and can
be obtained directly from laboratory stress–strain–time response.

3. Determination of the parameters involves much reduced curve fit-
ting and regression, and their number is less than that in the classical
models of comparable capability.

4. The models can be implemented easily in nonlinear computer
(finite-element) procedures, as the characteristics of the equations
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and matrices involved are similar to those in traditional finite ele-
ment procedures.

5. The overlay model is consistent with the underlying hierarchical
nature of the DSC. As a result, models of increasing sophistication
can be adopted by adding parameters corresponding to additional
behaviorial features of a material.

6. The multicomponent DSC can lead to more general models in which
relative motions can be permitted; that is, the requirement of capa-
bility of strains between units in the overlay models (Fig. 8.14) can
be relaxed.

8.7 Examples

Example 8.1 Elastoviscoplastic (evp) Models for Solders
Details of the characterization using the elastoplastic (�0) model for solders
(Pb/Sn) with different compositions used as joining materials in electronic
packaging and semiconductors problems are given in Example 7.5, Chapter 7.
Here, we consider the viscous or creep behavior by using the evp–Perzyna-
type model, which allows essentially for viscoplastic deformations in the sec-
ondary creep regime (Fig. 8.1).

The measured stress vs. strain rates under different temperatures for a 60%
Sn–40% Pb solder are shown in Fig. 8.12(a), as reported by Pan (19). This data
was used to determine the temperature dependent-viscous parameters � and
N by following the procedure described earlier; see Fig. 8.12(b). The values of
the parameters at different temperatures are given in Table 8.2 (11, 12).

The parameter N does not vary significantly with temperature; hence, an
average value of 2.67 was used. The temperature dependence for the fluidity
parameter, �(t), is given approximately by 

(1a)

where �300 is the value of � at the reference temperature of 300 K, which was
found to be ln �300 � 1.8/sec.

Predictions. An example of the predicted behavior of the solder show-
ing stress relaxation is shown in Fig. 8.22 (11). A shear stress of 20 MPa was
applied and the corresponding shear strain was computed based on the vis-
coplastic equations (evp) model. Then the strain was held constant and the
viscoplastic equations were used to predict the stress relaxation. The elastic
and plastic (�0-model) parameters are given in Chapter 7, and the viscous
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parameters (Table 8.4) were used. The predictions in Fig. 8.22 were obtained
for four different temperatures and show consistent trends.

Example 8.2 Elastoviscoplastic (evp) Model for Rock Salt
Appropriate characterization of the thermomechanical behavior of rock salt
is important for analysis and design of underground excavations, e.g., stor-
age chambers for nuclear waste. Application of the thermoplastic and ther-
moviscoplastic models to characterize behavior of rock salt is described in
this example (14). Available test data (33–36) for a rock salt were used to
determine various temperature-dependent parameters, as follows:

Table 8.5 shows material parameters at different temperatures obtained by
using the test data (14, 33–35). Expressions for their temperature depen-
dence are also shown in Table 8.5. The elastic parameters were found from
the test data by Burke (33) and Yang (34). The plasticity parameters for the

TABLE 8.4

Viscous Parameters for Pb40/Sn60 Solders at Different Temperatures, 
Obtained from Pan (11, 19) 

Temperature  293 K  313 K  333 K  373 K  393 K

Fluidity parameter ln(�)  0.578  2.058  3.475  4.61  6.96
Parameter N
(average)

 2.665 2.645  2.667 2.448 2.74
2.67 2.67 2.67 2.67 2.67

FIGURE 8.22
Simulated stress relaxation for 60% Sn–40% Pb solders at different temperatures (11).
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HISS �0-model were found from the test data by Kern and Franke (35). The
creep parameters were found based on the test data by LeComte (36).

Figure 8.23 shows comparisons between the test results (35) and predictions
for stress–strain behavior at three temperatures—300, 336, and 350 K—for ini-
tial confining stress � 30 MPa. Here, the temperature-dependent �0-plasticity
model is used. The temperature-dependent viscoplastic model was used to
predict the test behavior (33). Figure 8.24 shows strain vs. time response for
creep at two temperatures, 302 and 377 K. It can be seen that the models pro-
vide very good predictions of the observed behavior.

Example 8.3 Stress Relaxation: Overlay (ve) Model
Figure 8.25(a) shows a one-element (eight-noded) finite-element mesh, with
axisymmetric idealization (Chapter 13). The viscoelastic overlay model with
parameters shown in Fig. 8.25(b) is adopted to analyze stress relaxation under
a constant displacement of � � 0.1 units applied at the top; each unit has thick-
ness � 0.50. Since �y1 � �y2 � 0, this model represents two Maxwell units in
parallel (Table 8.1). In the time integration, �t � 0.02 was used, with integra-
tion parameter � � 0.0. The finite-element computer procedure (37) was used
for calculations in this example and the subsequent examples 8.4 to 8.6;

TABLE 8.5

Material Parameters for Rock Salt at Different Temperatures (14) 
(with permission)

Temperature 
parameter  296 K  336 K  350 K  473 K  573 K  673 K

E (GPa)  34.13  32.19  31.59  27.49  25.15  23.35
ν  0.279  0.287  0.290  0.310  0.324  0.336

T (1/K) (# )  3.8  4.2  4.3  5.5  6.4  7.2
�  0.0516  0.0384  0.0349  0.0173  0.0111  0.0076 
�  0.690  0.620  0.590  0.450  0.380  0.33
n (average)  —  3.92  — — — —
a1 (# )  1.80  0.97  0.95 — — —
�1 (average)  — —  0.474  — — —
� (# /day)  4.95  6.11  6.54  10.77  14.8  19.35 
N (average)  —  3.0  — — — —
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FIGURE 8.23
Comparisons between HISS �0-model predictions and test data at different temperatures (14).
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FIGURE 8.24
Comparisons between evp model and test data at different temperatures (14) (with permission).
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Sharma (38) provided assistance in these calculations. Figure 8.26 shows (axial)
stress vs. time computed from the finite-element analysis. The results show the
same trends as the viscoelastic solution reported by Yamada and Iwata (39).

Example 8.4 Thermal Creep in Restrained Bar: evp Model
Figure 8.27(a) shows a five-element (eight-noded) mesh for a bar restrained at
each end. The bar is subjected to a temperature change �T � 10 degrees, which
varies linearly up to time t � 0.1 and then is held constant [Fig. 8.27(b)]. The
parameters for the evp (Perzyna) model (Fig. 8.17) are as follows:

Time step �t � 0.02 was used with � � 0 in the integration.

FIGURE 8.25
Stress relaxation: ve (Maxwell) model.

E 50 units, v 0.0� �

� 0.02, N 1.0� �


T 0.00096�

�y 0.0�
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FIGURE 8.26
Stress vs. time response.

FIGURE 8.27
Mesh and temperature variation.
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Figure 8.28 shows the computed axial stress vs. time curve. The stress
increases to a value of about 0.48, and thereafter it decreases with time. This
result is qualitatively similar to that reported by Yamada and Iwata (39) based
on an analytical solution and a finite-element procedure.

Example 8.5 Creep Analysis: ve, evp, and vevp Overlay 
Models with von Mises Plasticity Criterion
Figure 8.29 shows a five-element mesh. The overlay model is used for ve, evp,
and vevp versions (Table 8.1). A stress �0 � 800 units is applied at the top,
kept constant up to four time units, and is then removed. In the time integra-
tion, the time step �t � 0.10 is used with � � 0.0. The parameters used are
shown in Table 8.6(a). Figure 8.30 shows computed strain vs. time plots for
the three models, which show consistent trends.

Example 8.6 Creep Analysis: ve, vp, and vevp
Models with HISS Plasticity
The finite-element mesh used is the same as in Fig. 8.29. However, the load
applied is �0 � 2000 units, and the parameters are different; they are shown in
Table 8.6(b). Figure 8.31 shows computed strain vs. time plots for the three
models. The trends in these plots are somewhat different than those in Fig. 8.30
for the von Mises criterion because the HISS �0-model allows for continuous
yielding.

The parameters chosen in Examples 8.3 to 8.6 are arbitrary, as the examples
are intended to show the capability of the models to simulate viscoelastic, vis-
coplastic creep or both. The parameters of given materials should be found

FIGURE 8.28
Stress vs. time behavior for restrained bar.
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from laboratory stress–strain–time responses under uniaxial, triaxial, and�or
shear loadings.

Example 8.7 Viscoplastic Model for Asphalt Concrete
Scarpas et al. (40) used the HISS �0-plasticity model (Chapter 7) with the
Perzyna (evp) formulation for the characterization of the thermomechanical
and rate-dependent behavior of asphalt concrete.

Figures 8.32 to 8.34 show laboratory uniaxial compression, tension, and
incremental creep test results, respectively, from testing with 100-mm high
and 100-mm-diameter specimens of asphalt-concrete mix of type 0�16 with
6% bitumen 80�100 (40). The tests were performed at different temperatures
and deformation rates ( ) for the compressive and tensile loadings. For the
creep behavior, the tests were performed at room temperature of 20$C. The
creep response, Fig. 8.34(a), was divided in two parts; the first part up to
about 12 seconds, in which for each increment of stress, the strains stabilize
such that  � 0 [Fig. 8.34(b)], and the second part from 12 to 17 seconds, dur-
ing which the strains increase at approximately the constant rate, Fig. 8.34(c).
After about 17 seconds, tertiary creep occurred.

The HISS �0-plasticity model was used in the context of the evp model to
characterize the first part of the creep response, in which, for a given stress
increment, the viscoplastic strains stabilized such that F � 0 (Fig. 8.3). For the

FIGURE 8.29
Creep analysis: von Mises and HISS models.

�̇

�̇



© 2001 By CRC Press LLC

second part in which the creep strains do not stabilize, the behavior was sim-
ulated by defining a creep initiation surface at the stress level when the first
part stops. For subsequent stress (increments), the overstress, denoted by d in
Fig. 8.35, allows the use of the evp model, in which the creep strain increases
at a constant rate until the tertiary creep.

The hardening function, 
, was expressed by Scarpas et al. (40) as a function
of the dissipated energy, wp, during the first part of the creep response as

(7a)

where  is the value of  at 20$C up to which the response was considered to
be elastic. Plots of yield surfaces and of 
 vs. wp are shown in Fig. 8.36(a) and
(b), respectively. The latter is similar to 
 expressed in terms of �vp, Eq. (8.4b).

For fracture and degradation analysis, Scarpas et al. (40) expressed fracture
energy given by the area under the stress (�) vs. w (crack opening length)
(Fig. 8.37), which was expressed as

w � �c�cr (7b)

where �c is the characteristic length and �cr is the smeared crack strain. An alter-
native and general approach based on critical disturbance can be used for micro-
cracking leading to fracture and degradation (Chapter 12). Here disturbance, D,

TABLE 8.6

Parameters for ve, vp, and vevp Overlay: Von Mises and HISS Plasticity

(a) von Mises: �0 � 800

ve vp vevp
Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2

E
ν 0.20 0.20 0.20 0.20 0.20
�

N 1.0 1.0 1.0 1.0 1.0
�y 0.0 5000 750 0.0 1500
F0 1.0 1.0 1.0 1.0 1.0

(b) HISS: �0 � 2000

ve vp vevp
Unit 1 Unit 2 Unit 1 Unit 2 Unit 1 Unit 2

E 2 # 2 # 2 # 2 # 2 #
ν 0.20 0.20 0.20 0.20 0.20
�

N 1.0 1.0 1.0 1.0 1.0
�y�F 10,000 0.0
F0 1.0 1.0 1.0 1.0 1.0

�� � 0.06784, � � 0.755, n � 5.237, a1 � 0.46 # , �1 � 0.826, 3R � 50.

106 106 106 106 106

10 4� 10 4� 10 4� 10 4� 10 4�
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FIGURE 8.30
Predictions from overlay models: von Mises criterion.
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FIGURE 8.31
Predictions from overlay models: HISS �0-model.
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can be found from the test data (Figs. 8.32 and 8.33) by assuming linear elastic
or elastoplastic (�0) model to characterize the RI behavior. The FA response can
be characterized by using the asymptotic stress (c) (Fig. 8.32). Then D can be
expressed as

(7c)

where Du, A, and Z are parameters dependent on temperature (T) and defor-
mation rate 

The parameters for the �0-plasticity and viscous response were determined
from the test data (Figs. 8.32 to 8.34) by using procedures described in this
chapter and Chapter 7. They are listed below (40).

FIGURE 8.32
Uniaxial compression tests for asphalt concrete (40).

D Du T , �̇( ) 1 e
A T , �̇( )� vp

Z T ,�̇( )
�

��

�̇( ).

� 0.089 at T 20$C�( ), � 0.442; n 2.1� � �


0 0.0865 at T 20$C�( ), k 2800� �

� 1.5 10 9�  1�sec; N# 0.32� �
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A thermoviscoplastic model was implemented in a three-dimensional,
finite-element procedure (40), which was used to solve practical problems
involving pavement structures in which permanent deformations (rutting),
and microcracking and fracture are important design considerations.

Example 8.8 Overlay Model: Closed-Form Solution (38) 
Consider two overlays 1 and 2 [Fig. 8.15(a)]. Let �0 be the applied (major
principal) stress, �1. Also, let the thickness of the two overlays t1 � t2 � 0.5,
and , , and ,  be the major and minor principal stresses in overlays
1 and 2, respectively.

The stresses (Eq. 8.49) in the overlays are

(8a)

FIGURE 8.33
Uniaxial tension tests for asphalt concrete (40).
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�3
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1
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2
� 2�0� � �
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FIGURE 8.34
Creep response for asphalt concrete (40).

FIGURE 8.35
Secondary phase of creep due to overstress (40).
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and

(8b)

The strains in the overlays are

(8c)

and

FIGURE 8.36
Hardening for asphalt concrete (40).

FIGURE 8.37
Fracture energy for asphalt concrete at T � 25$C (40).
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However,  �  and  � ;  therefore,

(8d)

For axisymmetric idealization and the linear elastic model:

(8e)

and

where

Substitution of Eqs. (8c), (8d), and (8e) in Eq. (8a), and simplifications, lead to

(8f)

and

Equation (8f) can be used to solve for �1 and �3. Then from Eq. (8e), the expres-
sions for stresses are found as

(8g)
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and the overall stresses in the overlay are 

(8h)

Consider the yield function, F, in the Mohr–Coulomb criterion for the plastic
response (Chapter 6)

(8ia)

Assume � � 0; then

(8ib)

Now for �1 and �2 � �3, the deviatoric stresses, , are given by

and

(8j)

Consider � � 30$ and cos � �  hence

(8k)

The incremental viscoplastic strains are now evaluated as

(8l)
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The incremental viscoplastic strains in each overlay can be found by substi-
tuting the respective values of the fluidity parameters (�1 and �1) and cohesion
(c1 and c2) in Eq. (8l).

A computer routine was prepared for the foregoing closed-form solution
[Sharma (38)]. It was used to obtain the closed-form solution with the following
parameters for a rock salt (7):

Applied stress, �0 � 160; time step, �t � 0.50; 1 bar � 100 KN� . The analysis
can be continued for various time levels; for example, for 60 days a total number
of increments � 121 are required. The finite-element computer procedure (37)
was also used to solve the problem with the FE mesh [Fig. 8.38(b)]. Figure 8.39
shows computed strain vs. time from the closed-form solutions and the com-
puter procedure for three different confining pressures. Both correlate very well
and yield essentially the same results.

Overlay 1 Overlay 2

Elastic modulus, E  4,700  15,400
Poisson’s ratio, ν  0.24  0.24
Fluidity parameter, �  2 # � bar�day  1 # �bar�day
Cohesion, c  0.0  55.0 
Thickness  0.50  0.50 

FIGURE 8.38
Finite-element mesh for rock salt problem: closed-form solution with overlay model.

10 4� 10 5�

m2
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Example 8.9 One-dimensional Elastoviscoplastic
Model for Creep
Consider the solution in Eq. 8.24. Figure 8.40(a)–(c) show plots of strain vs.
time for H� � , , and  psi with � �  to .  Here �0 � 30,000 psi,
�y � 10,000 psi, and E �  psi. It can be seen that as the value of � increases,
the results approach the solution as per inviscid plasticity.

Example 8.10 One-dimensional Elastoviscoplastic Model
for Relaxation
Derive the relaxation solution for the one-dimensional case. Based on Eq.
(8.2a), the viscoplastic rate is given by

(10a)

because the applied total strain is constant. The solution of Eq. (10a) is expressed
as

(10b)

FIGURE 8.39
Closed-form and computer results for strain vs. time behavior.

105 106 107 10 10� 10 2�

106

d�
vp t( )
dt

-----------------
d�

e t( )
dt

---------------�
1
E
---d� t( )

dt
--------------�� �

�
vp t( )

� t( )
dt

---------- C��



© 2001 By CRC Press LLC

For the case of stress relaxation, consider that a strain (increment) �0 is
applied at time t � 0. Stress at t � 0 is given by

�0 � E�0 (10c)

and since the viscoplastic strain is zero at t � 0, we have

(10d)

Therefore,

C � �0 (10e)

Consider the linear hardening response; hence,

(10f)

FIGURE 8.40
Creep predictions for different values of H� and �.
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If the initial stress, �0, is greater than the yield stress (�y), stress relaxation
will occur and the overstress will tend to zero. For this case, the basic equation
is given by Eq. (8.19), which, after substitution of �dt and  from Eqs.
(10a) and (10b) leads to

(10g)

The general solution for Eq. (10g) can be written as

(10h)

Using the initial condition for stress,  is obtained as

(10i)

FIGURE 8.41
Stress relaxation predictions for different values of H� and �.
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Therefore, the solution for stress is given by

(10j)

where � � 1��. As t → �,

which corresponds to the inviscid plasticity solution.
Plots of � vs. strain for H� � , , and  psi with � �  to  are

shown in Fig. 8.41. Here, �0 � 0.03, E �  psi, and �y � 10,000 psi. 
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Porous materials can involve full saturation when all the pores in their solid
particle matrix are filled with a fluid (or water). When the pores are only par-
tially filled with the fluid, air or gas exists in the pore space not occupied by
the fluid. Testing and modelling of the behavior of saturated porous materi-
als have advanced more than those for the partially saturated or unsaturated
materials. However, there has been a recent surge in research for the latter
due to their importance in such areas as geoenvironmental engineering, mass
transport, and other engineering systems. In the following, we consider the
DSC model for both.
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9.1 Brief Review

The literature on the modelling and mechanics of saturated and partially sat-
urated porous materials is wide in scope. We do not intend to provide a com-
prehensive review here; however, selected works are stated. A number of
early works and textbooks (1–6) address these problems. Biot’s (7, 8) theory
of coupled mechanical response of porous saturated materials has provided
a basis for a number of formulations and implementation in computer (finite-
element) procedures (9–15); Chapter 13 considers the computer implementa-
tion aspects. Terzaghi’s (1) one-dimensional idealization for the behavior of
saturated soils can be shown to be a special case of Biot’s general three-
dimensional formulation.

Although the research activity for the modelling of the behavior of par-
tially saturated soils has increased recently, its importance for various engi-
neering problems has been recognized for a long time. A number of
investigations have proposed analytical and empirical models for saturated
and expansive soils (16–33). Many recent works have considered the basic
mechanisms of the behavior and have proposed analytical and numerical
models, including the use of the critical-state, hierarchical single-surface
(HISS) plasticity, disturbed state concept (DSC), coupled hydrothermo-
mechanical aspects, and computer implementation (34–54).

In the context of fluid flow or seepage through porous media involving
both saturated and unsaturated zones, Desai and co-workers (55–61) have
proposed and used the residual flow procedure (RFP). The RFP has proven
(62) equivalent to the variational inequality methods (63, 64) and shown to be
an alternative procedure for the fixed-domain analysis (65). Similar proce-
dures have been used for free surface flow in (66, 67), and for computer
(finite-element) analysis of unsaturated media (68, 69).

9.2 Fully Saturated Materials

Terzaghi (1) proposed the effective stress principle for defining the relation
between stresses and fluid or pore water pressure in one-dimensional satu-
rated media:

(9.1)

where  is the total stress,  is the effective stress carried by the solid skel-
eton through particle contacts, and p is the pore water pressure. Here we shall
use uw to denote the pore water pressure instead of p because uw is commonly
used in the literature and because p is often used to denote the mean (effective)

�
a

� p� � uw�� �

�
a

�
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stress �  The derivation of Eq. (9.1) is based on a number of assumptions,
e.g., the stresses and pore water pressure are defined over a nominal area, A,
and the contact area between solid particles, , is negligible during defor-
mation. Thus,  and uw do not allow for the changing (increasing) contact
areas during deformation (Chapter 2).

If the DSC formulation (Chapter 2) is used, the equilibrium of forces lead to

(9.2)

where D is disturbance,  is the fluid stress, which can be different from p in
Eq. (9.1), and  is the stress at contacts. Equation (9.2) allows for the calcu-
lation of  and  as functions of D, which is expressed in terms of contact
area,  (or void ratio, e); details are given in Chapter 2.

The theory developed by Biot (7, 8) is often used for the analysis of the cou-
pled behavior of saturated media. It is also modified to characterize unsatu-
rated media by introducing correction or residual (RFP) terms to allow for the
partial saturation. We shall give details of Biot’s equations and computer
implementation in Chapter 13. Constitutive models for saturated and par-
tially saturated media, and the equations that can be used for implementa-
tion in solution procedures, are discussed in this chapter. We define the
quantities based on nominal area, as in Terzaghi’s theory.

9.3 Equations

A symbolic representation of an element of partially saturated material is
shown in Fig. 9.1. The responses are decomposed here into those of the solid
skeleton, fluid (water), and gas (air). If the material is dry, the total force, 
is in equilibrium with the force, , in the solid skeleton:

(9.3)

If the material is fully saturated, the force equilibrium gives

(9.4a)

and

(9.4b)
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where uw and  are the pore water pressure and effective stress in the solid
skeleton, respectively. It is evident here that the responses of the solid skele-
ton and pore water are coupled; hence,  and uw are affected by each other.

For partially saturated materials, the equilibrium can be expressed as

(9.5a)

or

(9.5b)

(9.5c)

where ug is the pore gas or air pressure and s � ug � uw is the matrix suction;
if the gas happens to be air, s � ua � uw, where ua is the pore air pressure.

FIGURE 9.1
Dry and saturated materials.
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Again, Eq. (9.5) indicates that the responses of the solid skeleton, pore water,
and pore air are coupled.

In general, it would be necessary to define the constitutive equations for
the solid skeleton and water and air phases from appropriate laboratory
tests. Then, in a general solution (finite-element) procedure, coupled formu-
lations involving displacements, pore water pressure, and pore air pressure
are independent variables; in that case, all three will be evaluated during
incremental procedures. However, it may become difficult to formulate such
a coupled problem, particularly the constitutive equations for the three
phases. Thus, approximate procedures can be developed. In a simple approx-
imation, the response is considered to be uncoupled, in which the values of
uw and ug are known and can be converted into equivalent “loads,” as in the
RFP.

In a somewhat more rigorous procedure, the stresses computed from dis-
placements based on effective response can be used to evaluate relations that
define uw and�or ug, which can then be used for the next step of incremental
analysis for the effective response. Here the computed values of uw and�or ug

can be converted into equivalent or residual vectors that are integrated in the
coupled equations, e.g., based on Biot’s theory (see Chapter 13).

9.4 Stress Equations

For the case of a partially saturated medium with air and water in the pores,
the total stress tensor, , can be expressed, based on Eq. (9.5), as

(9.6a)

(9.6b)

where  is the effective stress tensor, and f(s) is the function of air and pore
water pressures. Figure 9.2 shows plots of expanding yield surfaces accord-
ing to the HISS plasticity model (Chapter 7); the slope of the ultimate enve-
lope (�) can increase with suction. Here, the intercept on the J1-axis can be
derived from Eq. (9.6) as

(9.7a)

or

(9.7b)

�ij
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�ij
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or

(9.7c)

where  and  are the first invariants of the total and effective stress tensors,
respectively, and  and  are the total and effective mean pressures, respec-
tively. The existence of suction modifies the response of the material and
increases the magnitude of the material’s tensile strength, which is propor-
tional to the term 3f(s) and is called the bonding stress. If the material is fully
saturated, Eq. (9.7) reduces to

(9.8a)

or

(9.8b)

as in Terzaghi’s effective stress equation.

9.4.1 Modified Form of Terzaghi’s Equation

A simplified form of Eq. (9.7), as a modification of Terzaghi’s one-dimensional
effective stress equation for saturated materials, was proposed by Bishop (17)
for partially saturated soils:

(9.9)

FIGURE 9.2
Expanding yield surfaces.
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where � is often called the weighting or effective stress parameter. In terms
of effective stress , Eq. (9.9) is written as

(9.10)

which, in terms of mean effective pressure,  �  becomes

(9.11a)

(9.11b)

where  is the total mean stress �   is the total mean stress in excess of
air pressure (ua), which is often referred to as net mean stress, and s is the
matrix suction or suction � ua � uw .

The parameter � attains a value of unity for saturated materials when the
relative saturation Sr � 1. Then Eq. (9.10) reduces to Eq. (9.1). For dry materi-
als, � � 0 and ua � 0; hence, Eq. (9.10) reduces to  indicating that the
total or observed stress equals the effective or solid stress.

A plot of � vs.  for different soils is shown in Fig. 9.3; the curves were
adopted from different publications, which are detailed in (20). The validity of
Eq. (9.10) has been questioned by some investigators (20, 22, 23) on the ground
that the parameter � may not be defined based only on an index property such
as Sr , particularly when the material can experience plastic deformations,
microcracking leading to softening (degradation) and collapse. Hence, we

FIGURE 9.3
Relations between � and Sr (20, which gives details of the origins of curves). Reproduced
from Geotechnique, Institute of Civil Engineers, London, England.
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propose the following generalization based on Eq. (9.6) as

(9.12)

where D is the disturbance as a function of plastic strain trajectory (	), void
ratio (e), or plastic work (w) (Chapter 3). If D is expressed as a function of Sr

or s, and since the effective stress, , is dependent on Sr or s, Eq. (9.12) can
be written as

(9.13)

Figure 9.4 shows a schematic of D vs. 	 or e, as functions of suction or satu-
ration. Various definitions of D are given later.

9.5 Incremental DSC Equations

The microstructure (solid skeleton or matrix) experiences relative particle
motions as affected by irreversible strains, air and the pore water pressures,
and suction. Hence, the disturbance can be considered to occur in the solid
skeleton and can be incorporated through the effective stress. Then for the
saturated case, the observed effective stress,  (in the solid skeleton), can be
expressed as

(9.14a)

FIGURE 9.4
Disturbance vs. plastic strain trajectory (	 ) or void ratio (e).
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or

(9.14b)

where , , and  are the vectors of stresses in the observed, relative
intact, and fully adjusted states in the solid skeleton (Fig. 9.5), respectively,
and D is the disturbance in the solid skeleton, which can be defined in differ-
ent ways (to be covered later). The incremental form of Eq. (9.14) can be
written as

(9.15a)

or

(9.15b)

where  and  are the constitutive matrices for the responses of the RI and
FA parts of the solid skeleton, respectively;  and  are the strains in the RI
and FA parts, respectively; and dD is the increment or rate of D.

In the case of partially saturated materials, Eq. (9.15) can be written as a
function of s (or Sr) as

(9.16)

Thus, the RI and FA responses, and D, are expressed as functions of suction
(s) or the saturation ratio (Sr).

Equation (9.15) or (9.16) can be integrated to obtain the effective response.
Then the pore water and air pressure or suction can be evaluated using the
effective quantities if the total stress is known. This is usually possible in lab-
oratory tests where both the total and effective response and suction are mea-
sured. For example, in the case of saturated materials [Eq. (9.8)], the pore

FIGURE 9.5
Mixture, and RI and FA parts in solids.
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water pressure can be evaluated as

(9.17)

where J1 (� �1 � �2 � �3) is the first invariant of the total stress tensor, �ij,
measured in the laboratory, and  is the effective invariant computed from
the integration of Eq. (9.15). Examples of prediction of laboratory behavior
using Eq. (9.15) are given later in section 9.10.

In the case of partially saturated tests, the air pressure, ua, can be computed
from [Eq. (9.7)]

(9.18)

where D is the disturbance (Fig. 9.4) and s � ua � uw is the value of suction in
the test.

In the case of general boundary-value problems, when coupled (e.g., Biot’s)
equations are solved incrementally, say, by using a finite-element procedure
(Chapter 13), the values of uw and ua are computed as independent variables
together with the displacements. Alternatively, a separate relation for ua may
be postulated; then the coupled formulation can involve only the displace-
ments and pore water pressures, uw .

9.6 Disturbance

Disturbance can be evaluated using laboratory test data such as stress–strain,
volumetric (void ratio), effective (pore water pressure), or nondestructive
properties. Then it can be expressed as

(9.19a)

or

(9.19b)

where s and  are the suction and initial effective mean pressure, respectively,
for a given test, and 	D and w are the (deviatoric) plastic strain trajectory and
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plastic work, respectively. A number of possible ways to define the distur-
bance are described ahead. Although the disturbances from different mea-
sured quantities characterize the same phenomenon, their magnitudes and
variations may not be the same. Hence, when used in the stress [Eq. (9.16)], D
needs to be determined from appropriate correlations with respect to distur-
bances from different definitions.

9.6.1 Stress-Strain Behavior

Two of the possible ways for defining the disturbance with respect to the
stress–strain response are indicated in Fig. 9.6. Figure 9.7 (a to f) shows the
stress–strain volume change behavior of a partially saturated soil as reported
by Cui and Delage (46) from triaxial tests under different confining pressures
(�3) and suction (s). The test data show that under some combinations of �3

FIGURE 9.6
Definitions of disturbance.
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FIGURE 9.7(a)
Observed stress–strain responses with different confining pressures and suction (46).
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FIGURE 9.7(b)
(continued)
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FIGURE 9.7(c)
(continued)
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FIGURE 9.7(d)
(continued)
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FIGURE 9.7(e)
(continued)
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FIGURE 9.7(f)
(continued)
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and s, softening and dilative response are exhibited, while for other combina-
tions, the response is mainly hardening and compactive.

The procedures for disturbance used for dense and loose soils (Chapter 3)
can be used for partially saturated soils for test data at a given value of the
suction. For the softening response, the RI behavior can be simulated as the
hardening response (nonlinear elastic or elastoplastic) as the continuation of
the prepeak curve. For the hardening behavior [Fig. 9.6(b)], the RI response
can be characterized based on the response under constant volume or den-
sity, iv . As a simplification, the zero stress (i�) can be adopted as the RI
response. In both cases, the FA response (c) can be characterized based on the
critical-state condition (c).

The choice of the RI and FA responses can depend on the behavior of a
given material. For instance, the FA state can be defined based on the
response at full saturation (i.e., zero suction), and the RI state on the response
at (approximately) zero saturation (i.e., high value of suction).

Alternatively, the response under the zero suction (saturated) condition
can be adopted as RI [Fig. 9.6(c) and (d)]. The FA response can be character-
ized as the critical-state behavior.

The disturbance function, D, can be expressed as

(9.20)

or

(9.21)

In the case of Fig. 9.6(a) and (b), the disturbance will vary from 0 to 1. Its
value can increase from zero to greater than unity, and then decrease for
Fig. 9.6(c), whereas from Fig. 9.6(d), it will vary from 0 to 1.

In the first alternative, softening will occur with positive D [Fig. 9.6(a)],
while stiffening will occur with negative D [Fig. 9.6(b)]. Hence, it will be nec-
essary to adopt appropriate values of quantities to identify softening and
stiffening. For instance, with respect to the initial void ratio, e �  will indi-
cate stiffening, and for e � , softening will occur. In the case of the second
alternative, stiffening will occur with respect to the RI response at s � 0. Thus,
disturbance with positive or negative sign will need to be used in Eq. (9.15).

9.6.2 Volumetric or Void Ratio

Disturbance can also be expressed in terms of the void ratio (e) or specific vol-
ume as

(9.22)
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where Dg denotes the “global” disturbance,  and  are the maximum
and minimum void ratios, respectively, and  is the observed void ratio.
Figure 9.8 shows a schematic plot of e vs. stress (e.g., mean net stress). The
value of Dg varies from zero to unity. However, in practice, a porous material
may have an initial void ratio  before testing, and for a given load-
ing, it may tend toward the final void ratio, . In that case, the disturbance
for the range of loading will start with an initial value of D0 (� 0) correspond-
ing to e0 and will tend toward the final disturbance, Df or Du (� 1); thus, the
disturbance will vary between D0 and Df  (Fig. 9.8). If necessary and appropri-
ate, the local disturbance, D�, for the given load can then be expressed as

(9.23)

which will vary from zero to unity for the given loading. It may be noted that
the definition of Dg [Eq. (9.22)] can be expressed as

(9.24)

in which Dg depends on factors such as plastic strains and suction. Thus, Dg

can be found from measurements of Sr during laboratory tests under differ-
ent values of  and s. A physical interpretation of Eq. (9.24) is that degree of
saturation can be considered a measure of disturbance.

FIGURE 9.8
Schematic of void ratio (e) vs. stess.
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9.6.3 Effective Stress Parameter

The foregoing definition of disturbance, which is applicable for the entire
stress–strain behavior, can be considered analogous to the representation of
the behavior of partially saturated material in terms of peak (failure) strength
proposed by Khalili and Khabhaz (33). Here the shear strength, 
, is
expressed as

(9.25)

where c� is the effective cohesion, �� is the effective angle of friction, and �
is the total stress. The drained shear strength of soil at full saturation, 
0, is
written as

(9.26)

where, at saturation, ua � uw . The difference between 
 and 
0 can be consid-
ered as the contribution to the strength due to suction; therefore,

(9.27)

and

(9.28)

Figure 9.10 shows plots of shear strength vs. matric suction, s, reported by
Gan et al. (70) at different initial void ratios. The disturbance at (peak)

FIGURE 9.9
Disturbance vs. void ratio (e) between test range of e (e0 to ef).
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strength, Dp, can now be expressed using Eq. (9.27) as

(9.29a)

(9.29b)

Figure 9.3 shows the variation of Sr with � for different soils as reported in
(20). Thus, for full saturation, Sr � 1 and � � 1; hence, Dp � 0. For dry condi-
tion, Sr � 0 and � � 0; therefore, Dp � 1. Thus, Dp, as plotted schematically in
Fig. 9.11, shows that it varies from 0 to 1 as saturation varies from 1 to 0, i.e.,
from a fully saturated to a dry condition.

In Eq. (9.29), the parameter � represents the change (increase) in strength
from that in the fully saturated (RI) state to that in the partially saturated
state. Thus, the parameter � can be treated as a measure of the disturbance.
For the entire stress–strain response, it will depend on factors such as plastic
strain or work, initial pressure, and suction.

9.6.4 Residual Flow Concept

The idea of disturbance can be derived from the residual flow procedure (RFP)
proposed by Desai and co-workers (55–61) for free surface seepage in two-
and three-dimensional problems. Its application for uncoupled seepage and
stress analysis is given by Li and Desai (58). In the RFP, a residual or correction
fluid “load” is evaluated based on the difference between permeabilities or

FIGURE 9.10
Shear strength vs. matric suction (70).
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conductivities or the degree of saturation, in the saturated and unsaturated
conditions. The RFP concept can also be used to modify the coupled equa-
tions for saturated media, say, in Biot’s theory, so as to allow for partial
saturation.

Figure 9.12(a) shows a porous (soil) medium in which the material is satu-
rated below the free surface (FS) and partially saturated above the FS. The
fluid pressure (uw) is positive in the saturated zone and negative (suction) in
the partially saturated zone. Figure 9.12(b) and (c) show variations of the
coefficient of permeability (k) and saturation with pressure, respectively. In
the fully saturated state, the permeability is ks, while Sr � 1.0. In the partially
saturated regions, the permeability is kus � ks and saturation Sr � 1. As the
suction increases, the permeability and saturation decrease and approach
asymptotically those in the dry state.

The disturbance, D, can be expressed as

(9.30)

and

(9.31)

Initially, in the saturated or RI state, kus �  and Sr � 1; finally, kus � kf and
Sr � Srf. Hence, D varies from 0 to 1. Thus, if the values of permeabilities or

FIGURE 9.11
Plot of Dp vs. Sr .
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saturation are measured during deformation of a specimen, the values of D
can be evaluated.

It is possible that the values and variations of D, according to the foregoing
definitions, are not the same as those required in the constitutive equations
[Eq. (9.16)]. Hence, it will be necessary to establish appropriate correlations
between disturbances from different methods in order to define the D
required in the DSC equations based on stresses [Eq. (9.16)].

9.7 HISS and DSC Models

The DSC and its hierarchical versions, e.g., HISS �0- and �1-plasticity models
(Chapter 7), can be used to develop constitutive equations for saturated and
partially saturated materials. A number of approximate and general formu-
lations are possible. We describe some of them here for partially saturated

FIGURE 9.12
Residual flow procedure.
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materials. Models for saturated materials can be derived as special cases of
those for the partially saturated case.

9.7.1 Plasticity �0- and �1-Models

If the effective response of the porous material (e.g., soil) is essentially the
plastic yielding or hardening type [Fig. 9.7 (c, d, e)], the �0- and �1-versions in
the HISS plasticity approach can be used by expressing the parameters as
functions of suction (s) or degree of saturation, Sr .

The yield function, F, for the �0-model (Chapter 7) can now be written as

(9.32)

where the parameters are expressed in terms of suction, s. Here the effective
stress quantities are nondimensionalized with respect to pa; however, the
overbar [as in Eq. (7.1)] is not shown, in order to avoid confusion with effec-
tive quantities.

If the behavior exhibits nonassociative properties, �(s) in Eq. (9.32) can be
expressed as

(9.33)

where � is the nonassociative parameter, �0 is the value of � at the end of ini-
tial (hydrostatic) loading, and rv is the ratio of the volumetric plastic strains
to the total plastic strain trajectory [Eq. (7.5), Chapter 7].

Figure 9.13 shows a schematic of F [Eq. (9.32)] in which the intercept 3R
denotes the bonding (tensile) strength of the material given by

(9.34)

FIGURE 9.13
Schematic of yield surfaces and bonding strength.
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The bonding strength will increase with suction, and the yield surface will
move to the left as suction increases, starting with zero suction (Sr � 1). The
parameters’ dependence on suction needs to be defined on the basis of labo-
ratory tests; an example is given subsequently.

The incremental effective stress equations [Eq. (9.16)] can be used to repre-
sent the behavior of partially saturated materials by using the elasticity and
plasticity parameters.

A number of investigators have proposed and used elastic, thermoelastic,
and elastoplastic models for partially saturated soils (37–41, 43–46, 48–53).
The elastoplastic models based on the critical-state concept have been used
commonly (41, 43, 45, 46, 50–52). The HISS and DSC models have been used
recently (47, 54). The HISS model has been shown to include the critical-state
and other plasticity (hardening) models as special cases (see also Chapter 7).

9.8 Softening, Degradation, and Collapse

Under certain combinations of suction (s) and initial (cell) pressure, ,  and
density (�0), a material may exhibit softening or degradation behavior
[Fig. 9.7(a, b, f)]. As discussed in Chapter 10, the microstructural adjustment
may entail threshold transition states, some of which lead to instability or col-
lapse of the microstructure. The latter is identified by the critical value of dis-
turbance, Dc, indicated in Fig. 9.4. Thus, the idea of critical disturbance can
provide a means for the evaluation of instability or collapse in dry, satu-
rated, or partially saturated materials; this is discussed in Chapter 13 and
Appendix I.

The incremental constitutive equations [Eq. (9.16)] can be used to allow for
the disturbance, which provides for the simulation of softening and collapse
responses. Note that the general Eq. (9.16) includes plastic hardening
response as a special case, when D � 0.

9.9 Material Parameters

The procedures for finding the parameters in the DSC/HISS models from
laboratory tests are presented in Chapters 3 and 7. Here we briefly describe
their evaluation for partially saturated soils.

Elastic. The modulus such as E and � or G and K are found as average
slopes of unloading curves and can be expressed as functions of suction, as
necessary.

Ultimate Parameters. The parameters associated with the ultimate asymp-
totic stress–strain response are �, �, and R. They are determined from test

p0
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data for given saturation (Sr) or suction (s) and then expressed as

(9.35a)

(9.35b)

(9.35c)

Here � represents the slope  of the ultimate envelope in –J1 space
(Fig. 9.13), and � is related to the shape of F in �1–�2–�3 space (Chapter 7).
The bonding strength R can be found approximately from

(9.35d)

where  is the (cohesion) intercept along the -axis, when J1 � 0
(Fig. 9.13) and is based on the assumption that the ultimate envelope is lin-
ear. If it is nonlinear, the slope to the initial part of the envelope can be used
to define  .

Hardening Parameter. The hardening or growth function, �, in Eq. 9.32
can be expressed as

(9.36)

where a1 and �1 are the hardening parameters dependent on suction, and 	 is
the trajectory of plastic strains.

Phase Change Parameter. This parameter is associated with the state of
volume change when transition from compaction to dilation occurs and the
change in volumetric strains, d
v, vanishes (Fig. 9.7). It can be expressed as a
function of suction as

(9.37)

For the FA response, the parameters can be defined on the basis of the con-
strained liquid or constrained liquid–solid assumption (Chapter 7). For the
former, only the bulk or hydrostatic response is relevant, and if the behavior
is represented by using the bulk modulus, K, it can be expressed as a function
of suction as

(9.38)

� � s( )�
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For the liquid–solid assumption, the critical-state concept can be used.
Here the critical responses can be expressed using the following equations
(Chapter 4):

(9.39a)

and

(9.39b)

where the slopes  and � are both expressed as functions of suction.

9.9.1 Disturbance

For a set of tests under given suction, s, Eq. (9.19a) can be written as

(9.40)

Plots of ln 	D and  lead to the values of A and Z (Chapter 3). Du is
obtained based on ultimate or residual values (of stress) (Fig. 9.6); its value
can also often be adopted as 1 or close to 1 (� 0.95). Then A, Z, and Du can be
expressed as

(9.41a)

(9.41b)

(9.41c)

9.10 Examples

We now consider examples of application of the HISS and DSC models for the
behavior of saturated and partially saturated materials. Two examples of the
use of the HISS plasticity models for saturated clay and sand are presented as
Examples 7.7 and 7.8 in Chapter 7. Additional examples are given here.
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Example 9.1 Saturated Sand
A series of laboratory undrained cyclic (frequency � 0.10 Hz) to multiaxial
tests were performed on saturated Ottawa sand with cubic specimens (10 �
10 � 10 cm) under different initial confining pressures  � �3 � 69, 138,
and 207 kPa and at relative density Dr � 60%. Figures 9.14 to 9.16 show test
data in terms of applied cyclic stress, �1 � �3 � �d vs. time, axial strain (
1) vs.
time, pore water pressure uw vs. time, and shear stress (�d) vs. axial strain (
1)
for the three values of ,  respectively (71–73). These data were used to find
the parameters. The (average) values of parameters obtained using the pro-
cedures in Chapters 3 and 7 are shown in Table 9.1; brief details are given
below (74).

Elastic Moduli. Figure 9.17 shows typical data in terms of 
oct vs. 
1 and

2 � 
3 from quasi-static or one-way (loading, unloading, reloading) CTC
(�1 � �2 � �3) tests, for  � 207 kPa. The values of E and � were found from

(1a)

(1b)

where Ei (i � 1, 2, 3) are the slopes shown in Fig. 9.17.
Ultimate. Figure 9.18 shows a schematic in terms of J1 vs.  in which the

ultimate and critical-state or phase change envelopes are shown. The ultimate
parameters, � and �, were found using the procedure given in Chapter 7.

TABLE 9.1

Material Parameters for the DSC Model: 
Ottawa Sand (72, 73)

Parameter Value

Elastic E 193,000 kPa
� 0.380

Ultimate
� 0.123
� 0.00

Phase Change n 2.45
Hardening h1 0.845

h2 0.0215
FA (Critical state) 0.150

� 0.020
0.601

Disturbance � 4.22
Z 0.43
Du 0.99

m

e0
c

�0

�0

�0

E 3
2

-------E1�

�
2�1

E2 E3�
-------------------�

J2D
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Phase Change. Figure 9.19 shows a plot of J1 vs.  from the three tests.
The value of n was found using the following equation (see Chapter 7):

 (1c)

where J1a and J1m are shown in Fig. 9.19. An average value of n � 2.45 was
found.

Hardening. The following equation, expressed in terms of the deviatoric
plastic strain trajectory, 	D, was used to find the parameters h1 and h2:

(1d)

which is the special case of Eq. (9.36). Figure 9.20 shows plots of ln	D vs. ln�
used to find the average values of h1 and h2 (Table 9.1).

Fully Adjusted State. Figure 9.21 shows plots of   vs.  [Eq. (9.39a)]
and  vs. ln  [Eq. (9.39b)], used to find the values of  and �.

Disturbance. Figure 9.22 shows plots of effective stress  vs. the number
of cycles (N) for  � 69, 138, 207 kPa, respectively; here the observed pore
water pressures were used to evaluate the effective stress at peak values of

FIGURE 9.14
Observed behavior of sand:  � 69 kPa (71, 72).�0
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cyclic stress (Figs. 9.14 to 9.16). Note that the ultimate asymptotic value of the
effective stress is zero; hence, Du � 0.99 was used. The disturbance was found
using the following equation:

(1e)

where  is the RI effective stress computed using the �0-model to simulate
the first cycle response without cyclic degradation (73). The disturbance func-
tion was expressed as

(1f)

Equations (1e) and (1f) were used to obtain plots of ln(	D) vs. ln[�ln(1 �
)]as shown in Fig. 9.23, which provided the values of A and Z. Plots of

disturbance vs. 	D(N)  are shown in Fig. 9.24. Here, the test data values refer
to Eq. (1e),  while the function  values refer to Eq. (1f) in which the parameters
A, Z, and Du (Table 9.1) were used.

FIGURE 9.15
Observed behavior of sand:  � 138 kPa (71, 72).�
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9.10.1 Back Predictions

The dynamic finite-element procedure (74–76 and Chapter 13) was used to
predict the behavior of the test specimens. Figure 9.25 shows the finite-ele-
ment mesh and loading with frequency � 0.1 Hz. The latter involved applying
the confining stress incrementally and then applying the cyclic, �d, stress
incrementally with different amplitudes (Figs. 9.14 to 9.16), as it was done in
the laboratory tests.

Figures 9.26 to 9.28 show comparisons between predicted and observed
effective stress  and excess pore water pressure vs. time (or number of
cycles) for  � 69, 138, and 207 kPa, respectively. The pore water pressures
were computed using Eq. (9.17).

In the above-mentioned back predictions, the parameters used were those
for the tests used to find them, the relative density of which was Dr � 60%. In
order to validate the model further, the average parameters (Table 9.1) were
used to predict an independent test, and not used to find the parameters. This
test involved  � 69 kPa and relative density Dr � 40%. Figure 9.29 shows
comparisons between predictions and test data in terms of the effective stress

FIGURE 9.16
Observed behavior of sand:  � 207 kPa (71, 72).�
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 and excess pore water pressure (uw). The model also provides good pre-
dictions for the independent tests (74).

Liquefaction. The DSC provides a basis for the evaluation of instability
and liquefaction. Analysis and prediction of liquefaction for the Ottawa sand
behavior are given in Chapter 12.

Example 9.2 Saturated Clay
The DSC model was used to predict the laboratory undrained behavior of a
saturated marine clay (77, 78). These predictions for typical tests using the
DSC model appear in Chapter 7. Here we present predictions of typical (tri-
axial) tests for the clay by using a finite-element procedure in which the DSC
model was implemented (75). The DSC model is used for the virgin
stress–strain response (hardening, peak, and softening), while separate and

FIGURE 9.17

oct vs. 
i (i � 1, 2, 3) curves for CTC test:  � 207 kPa (71, 72).�0

�( )
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simplified procedures are used to simulate unloading and reloading; details
of these procedures are given in Chapter 13.

The material parameters for the clay are given in Table 9.2. The procedures
for finding the DSC parameters are given in Chapters 3 and 7. Figure 9.30
indicates the procedure for finding the unloading and reloading parameters
included in Table 9.2 (see Chapter 13).

FIGURE 9.18
Ultimate and phase change envelopes (72).

FIGURE 9.19
Phase change envelope in  � J1 space: determination of n (72).J2D
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The DSC model with the unloading–reloading procedures was used to
predict the conventional triaxial compression (CTC) (�1 � �2 � �3) behavior
with initial confining pressure  � 276 kPa (40 psi) and initial void ratio
e0 � 0.8614. The FE analyses were obtained by using 1-, 4-, and 16-element
meshes for triaxial specimens, with boundary conditions similar to those in
Fig. 9.25. The confining stress  was first applied in increments, and then
the stress difference (�1 � �3) was applied incrementally. The three meshes,
as expected, provided essentially the same results (76).

Figures 9.31(a) and (b) show comparisons between predicted and observed
stress (�1 � �3) vs. strain (
1) and pore water pressure [Eq. (9.17)] vs. 
1 responses
for the above test. The correlations, including the unloading–reloading responses,
are considered satisfactory.

Example 9.3 Saturated and Partially Saturated Sandy Silt
A series of laboratory triaxial tests were performed on saturated and par-
tially saturated silt under different initial confinements (p0 � �3 � 200, 400,
and 600 kPa) and different values of matrix suction (ua � uw) (54, 79, 80). The
HISS �1-plasticity and DSC models (47) were used to predict the behavior

FIGURE 9.20
Plots for determining of hardening parameters (72).
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of saturated and unsaturated specimens. The model parameters were found
from the triaxial tests and are shown in Table 9.3.

9.10.2 Saturated Soil: �1-Model

Figure 9.32 shows comparisons between predictions from the �1-model and
test data for two typical values of  � 200, 400, and 600 kPa. The stress–
strain responses in terms of 
oct vs. 
1, 
2 � 
3 correlate well, except in the
strain-softening zone. The volumetric response compares well in the early
regions; however, the correlation is not good in the later regions. For
improved correlation, it would be appropriate to use the DSC model, as dis-
cussed ahead.

FIGURE 9.21
Determination of parameters  and � (72).m
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9.10.3 Partially Saturated Soil: �1-Model

In the tests for the unsaturated soil, the parameters �, R, a1, and �1 were
expressed as functions of the suction (s) (54). Figures 9.33 (a)–(d) show varia-
tions of these parameters for s � 0, 50, 100, and 200 kPa. They show that the
slope � of the ultimate envelope, the bonding stress R, and the phase change
parameter n increase with suction, while the hardening parameter a1 decreases

TABLE 9.2

Parameters for DSC Model: Marine Clay (76–78)

Parameter Value

Elastic E 10,350 kPa (1500 psi)
� 0.35

Ultimate � 0.047
� 0.0

Phase change n 2.8
Bonding stress 
(normally
consolidated clay)

R 0.0

Hardening Eq. (7.11b),

Chapter 7

0.0001
0.780
0.0
0.0

FA (critical state) 0.0694
� 0.1692

0.9033
Disturbance A 1.73

Z 0.309
Du 0.75

Unloading/reloading 
(see Chapter 13)

34,500 kPa
3,450 kPa

0.005

TABLE 9.3

Parameters for HISS �1- Model for Saturated 
Sandy Silt (54, 79, 80)

Parameter Symbol Value

Young’s modulus E 145 MPa
Poisson’s ratio � 0.40
Ultimate � 0.08

� 0.58
Hardening a1 0.005

�1 0.36
Phase change n 2.45
Bonding stress R 0.0
Nonassociative � 0.50

h1

h2

h3

h4 







m

e0
c

Eb

Ee


1
p
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with suction. The other parameters (Table 9.3) were assumed to be constant.
The �1-model, with the variations of parameters in Fig. 9.33 expressed as lin-
ear or nonlinear functions of suction, was used to predict the behavior of
drained triaxial compression tests.

The following three tests involved the same initial net mean pressure,  �
ua � 400 kPa (54):

C1—saturated soil:  � 400 kPa, s � 0 kPa
C2—small suction:  � 450 kPa, s � 50 kPa
C3—high suction:  � 600 kPa, s � 200 kPa

Two additional tests involved average suction:

C4—average suction: �3 � 600 kPa, s � 100 kPa
C5—average suction: �3 � 400 kPa, s � 100 kPa

FIGURE 9.22
Effective stress vs. cycles (N): determination of disturbance (72).
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Figure 9.34 shows comparisons between predictions and experimental
behavior using the �1-model for tests C1, C2, and C3, where the foregoing
parameters were used as functions of suction. The correlations, particularly
for the stress–strain behavior, are very good for the saturated (C1) and small
saturation (C2) cases when the behavior is essentially of the plastic yielding
type. At higher suction (C3), the test data show softening behavior, and the
�1-model provides good correlation up to about the peak stress. The correla-
tions for volumetric responses for the three cases are not as good as the
stress–strain responses, but are considered satisfactory.

9.10.4 DSC Model

In order to simulate the softening response, it is appropriate to use the DSC
model. The disturbance, D, was evaluated based on the test data involving

FIGURE 9.23
Determination of disturbance parameters A and Z (72).
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softening, by using the following equation:

(3a)

Here the results for the shear stress measure   vs. 
1 are used, where i,
a, and c denote RI, observed, and FA states, respectively. Now D is expressed
in terms of the trajectory of the deviatoric plastic strain, 	D (Chapter 3):

(3b)

FIGURE 9.24
Plots of disturbance (D) vs. deviatoric plastic strain trajectory (	D) (72).

D
J2D

i J2D
a

�

J2D
i J2D

c
�

-------------------------------�

J2D

D Du 1 e
A	D

Z
�

�( )�



© 2001 By CRC Press LLC

The use of Eqs. (3a) and (3b) provides the values of Du, A, and Z. Plots of
� ln[�ln(1 � Du)] vs. ln 	D [Eq. (3b)], based on tests C3 and C4, are shown

in Fig. 9.35 (54); they provide the values of A and Z.
Tests C3 (  � ua � 500 kPa and s � 200 kPa) and C4 (  � ua � 500 kPa and

s � 200 kPa) exhibited softening response. The parameter Du � 0.85 was
assumed to be independent of suction. The parameters for the two tests are
as follows (54):

Figure 9.36 shows the comparison between the observed disturbance [Eq. (3a)]
and the computed disturbance [Eq. (3b)] for the two tests and indicates very
good correlations.

FIGURE 9.25
Finite-element mesh and applied stress for test specimen (72, 74).

Test A Z Du

C3: s � 200 kPa 4.5 � 3.90 0.85
C4: s � 100 kPa 1.4 � 8.10 0.85

D
�

pa pa

10 5�

10 10�
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Figure 9.37 shows comparisons between prediction by the (RI) �1 and DSC
models and the data for the two tests C3 and C4. It can be seen that the DSC
model simulates the softening response well and overall provides improved
correlations compared to those by the �1-plastic hardening model.

The foregoing predictions of tests involved the use of the parameters
obtained by using given tests. An independent test (not used to find those
parameters) was also predicted. Figure 9.38 shows the predictions and test
data for the drained triaxial compression test (C5) with �3 � 300 kPa and s �
100 kPa. The DSC model provides a good simulation of the independent test.

FIGURE 9.26
Observed and predicted behavior: Dr � 60%;  � 69 kPa (74) (with permission).�0
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10
The DSC for Structured and Stiffened 
Materials
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In this chapter, we consider use of the DSC for materials that are referred to
as structured and those that experience stiffening or healing during mechanical
and thermal loading, and�or chemical effects. The term “structured” is rela-
tive. For our purposes, it can refer to a material that possesses a micro-or
macro-structural matrix or particle arrangement that is different relative to,
or is superimposed on, that of its basic or reference state. In this sense, many
materials can be classified as structured. An anisotropic material can be con-
sidered as structured with respect to its isotropic state. A material that exhib-
its nonassociative plastic response caused by friction possesses a different
structure compared to its state that involves associative response. A softening
or degrading material has a structure that is different from its state that exhib-
its nonsoftening or hardening response.

Figure 10.1 depicts responses of a soil in its overconsolidated (OC) and nor-
mally consolidated (NC) states (1). The NC state can result due to gradual
deposition of soil particles under increasing (normal) load, while the OC
state results if the material has undergone loading and unloading such that
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the current stress is lower than the previous one. As a result of the OC, the
material’s microstructure changes, which can entail formations of preferred
directions and additional interparticle bonds (Chapter 2). Under loading, an
OC soil usually exhibits a stiffer response compared to the soil’s response in
its basic NC state. As the load is increased, the peak stress is reached, after
which the material softens or degrades. The softening is caused by the annihi-
lation of the OC structure and bonds, which may initiate before or at the peak
stress. On further deformations beyond the peak, the response enters the
residual state, and in the limit, the FA (or the critical state) is approached. In
other words, the limiting state of an OC material would be the same as that for
the NC material.

10.1 Definition of Disturbance

In the DSC, the disturbance (D) for structured materials can be defined in
different ways. Figure 10.2(a) shows a schematic of disturbance, in which Db

denotes disturbance relevant to the basic structure, e.g., NC or reconstituted
state. The latter can be obtained when a natural (OC) material is broken
down, say, by pulverization, and then it is remolded (or reconstituted) with
the natural moisture content.

The overall disturbance, ,  is expressed as

(10.1)

where Db denotes disturbance for the basic (e.g., NC) state, and Ds is the dis-
turbance associated with the structure. A special form of Eq. (10.1) can be

FIGURE 10.1
Overconsolidation structure (OC) with respect to normal consolidation (NC).

D

D Db Ds��



© 2001 By CRC Press LLC

written as

(10.2a)

in which the first term represents Db, the function f(s) denotes the change
(increase or decrease) in disturbance due to the structure, � is the (deviatoric)
plastic strain trajectory, and Du, A, and Z are the material parameters. Equa-
tion (10.2a) can be simplified such that the response is considered only for the
behavior of the structured state. Then, it is specialized as [Fig. 10.2(b)]

(10.2b)

Alternatively, the disturbance of the material in the basic state, Db, can be
adopted as unity; then

(10.2c)

FIGURE 10.2
Disturbance due to structure.
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Figure 10.2 shows that the structure imposed on the basic state is annihi-
lated gradually as the load is applied, and in the limit, it approaches the
basic structure, Db0. An example of the characterization of the compressive
behavior of a structured soil obtained by using the simplified Eq. (10.2c) is
given subsequently.

Figure 10.3(a) shows the response of a structured material that exhibits
hardening, peak, and softening. After the critical or threshold plastic strains,
�t(�t ), the internal microstructure of the material can modify due to the
strengthening of bonds as a result of different influences. In the case of dislo-
cated silicon under thermomechanical loading, such an influence can arise
due to the locking of dislocations with impurities such as oxygen and nitrogen,
in the presence of specific temperatures.

FIGURE 10.3
Softening and stiffening responses.
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A saturated soil (sand) under cyclic (earthquake) loading can first experi-
ence degradation due to the increase in pore water pressures, i.e., decrease in
the effective stress, leading to instability and liquefaction at the critical distur-
bance (Dc ) corresponding to plastic strains (�c) after loading cycles (Nc); see
Fig. 10.4(a) and (b). Then, in the postliquefaction region, the porous material can
experience drainage with a resultant decrease in the pore water pressure (2).

FIGURE 10.4
Liquefaction and postliquefaction behavior of saturated sand.
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This can lead to an increase in the strength as the effective stress increases.
Hence, the disturbance decreases in the postliquefaction zone (3) [Fig. 10.4(c)].

An asphaltic concrete (used in pavements) is subjected to vehicular traffic
load during days, while it can experience healing or increase in stiffness due
to rest periods (during nights) (4). Such healing can be attributed to chemical
effects as well as unloading, which can result in a decrease in plastic strains
and microcracking. The specific contributions of mechanical unloading and
chemical effect are not known precisely. Figure 10.5 shows the effect of rest
periods on the flexural stiffness of an asphalt obtained from flexural fatigue
tests on beams, with and without rest periods (4). The figure also shows that
the cycles to fatigue failure (�Nf) increase with rest periods.

In Chapter 2 we discussed the response of a porous chalk that exhibits the
behavior in Fig. 2.10 similar to that in Fig. 10.3. In the case of composite or rein-
forced materials, the disturbance can be defined relative to the responses of
the component materials (Chapter 2).

Examples of the formulation of the DSC for a structured soil, a dislocated
silicon with oxygen impurities, a reinforced soil and a jointed rock, and healing
or stiffening due to unloading are discussed in the remainder of this chapter.

10.2 Structured Soils

Materials such as soils can develop a structure due to natural deposition pro-
cesses caused by geological history and by artificial methods such as applica-
tion of mechanical load. Such a structure can be defined with respect to that
of the soil in its reconstituted or remolded state, which can be considered to
represent its basic state before the forces causing the change in the structure
were imposed.

In the DSC, the behavior of the reconstituted soil can be treated as the fully
adjusted state, and then the effect of the structure developed can be introduced

FIGURE 10.5
Flexural stiffness of asphalt concrete with and without rest periods (4). 2000©John Wiley &
Sons Ltd. Reproduced with permission.
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as the change in disturbance with respect to the disturbance at the reconsti-
tuted state. Then the modified disturbance, , to allow for the structure,
which can result in stiffening with respect to the FA state, can be expressed
using Eq. (10.2).

We describe an example of the application of the DSC for naturally or arti-
ficially structured soil. The formulation presented here has been reported
by Liu et al. (5). The incremental strain equations for the DSC [Eq. (4.46),
Chapter 4] are given by

(10.3a)

where D� is the disturbance function. Liu et al. (5) assumed that the RI repre-
sents “zero strain state,” i.e., it is characterized as a perfectly rigid material.
Hence,  , and Eq. (10.3a) is simplified as

(10.3b)

The disturbance function for the structured soil is expressed as

(10.4)

Hence, the observed strain is given by

(10.5)

The disturbance function can be decomposed in two parts as

(10.6a)

and

(10.6b)

where  and  are disturbance functions related to volumetric and devi-
atoric behavior, respectively, and

(10.7a)

(10.7b)
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Here, �i (i � 1, 2, 3) are the principal strains. Thus, the DSC can be formu-
lated for the combined volumetric and deviatoric response using Eq. (10.6).
Liu et al. (5) considered the compressive behavior of structured soil, based on
Eq. (10.6a).

Example 10.1 Compression Behavior of a Structured Soil
Figure 10.6 shows a schematic of the compression behavior of structured and
reconstituted soils expressed in terms of void ratio (e) and ln p	, where p	 is
the mean effective pressure. As the pressure is increased on the structured
soil, it experiences a process of destructuring during which the soil’s structure
(bonds) is annihilated and, in the limit, the soil approaches the reconstituted
state, at high pressures.

It was assumed that when the pressure p	 was below the pressure  when
yielding occurred, the behavior was elastic, and there was no disturbance. In
other words, disturbance and destructuring occur only due to plastic yielding
beyond the pressure .

The yielding virgin response beyond  was defined using the DSC model,
in which the disturbance,   [Eq. (10.6a)] was defined based on the observed
(compression) behavior of a number of structured soils as [Eq. (10.2c)]

(10.8)

where b is the disturbance index, to represent the structure with reference to
that of the reconstituted soil. In Eq. (10.8), the value of Db in Eq. (10.2) is
assumed to be unity relevant to the reconstituted state. A plot of  is shown
in Fig. 10.2(b), where b � f(s).

Liu et al. (5) presented various versions of the DSC model for the compres-
sive behavior: (1) for the case when the (experimental) compression data are
available in terms of mean effective pressure and volumetric response, and (2)
for the case when the data are available in terms of effective vertical or axial

FIGURE 10.6
Schematic of compression behavior of reconstituted and structured soils (5). ©John Wiley
& Sons Ltd. Reproduced with permission.
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stress ( ) from one-dimensional compression tests. These formulations were
based on the critical-state concept (5–7), and the resulting equations are given
below:

Case 1:

(10.9)

Case 2:

(10.10)

where  and  denote slopes of a virgin curve (Chapter 3), and  and 
denote the slope of an unloading curve on  an e � ln p	 plot.

10.2.1 Validations

The DSC model was used to predict compression behavior of seven different
soils (5). Typical results for two soils are included here; Table 10.1 shows their
properties. 

For soil 1, the test data were available (8) in terms of mean effective stress,
p	. Then, Eq. (10.9) was used for the back predictions. For soil 2, the test data
were available (9) in terms of effective vertical stress  ( );  hence, Eq. (10.10)
was used for the back predictions.

TABLE 10.1

Details of Compression Tests and Parameters

Soil Reference (kPa) b Comments

1. Mexico
City clay

Terzaghi (8) 92.0 1.65 — — Very high void ratio;
e � ln p	 nonlinear

2. Leda clay Quigley and 185.0 4.10 e � ln  linear
Thompson (9) 0.02 0.16
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The values of the initial yield stress, , were determined from the com-
pression curves plotted in the e � ln  coordinate system. The value of the
disturbance index, b, was evaluated as the best fit for the predictions using
Eq. (10.9) or (10.10) and the test data for virgin compressions behavior. The
parameters,  and , were found using the test data for the reconstituted
soil. When the e � ln  response was linear (soil 2), behavior for both the
structured and reconstituted states was simulated. When the e � ln
response was nonlinear (soil 1), only the structured soil behavior was pre-
dicted; Figure 10.7 shows comparisons between predictions and test data for
soil 1 (Mexico City clay). Figure 10.8 shows similar comparisons for the Leda
clay (soil 2), in which predictions are shown for both the structured and
reconstituted soils.

These results and comparisons for other soils (5) show that the DSC model
provides very good predictions for both the structured and reconstituted
states for under compressive (volumetric) behavior. The DSC model can be
developed for the shear response [Eq. (10.6b)]. Then, it would be possible to
simulate the combined compressive and shear behavior of structured soils by
using the DSC.

FIGURE 10.7
Comparisons for one-dimensional compression tests on Mexico City clay (5).

FIGURE 10.8
Comparisons for one-dimensional compression tests on Leda clay (5).
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10.3 Dislocations, Softening, and Stiffening

The mechanical behavior of silicon crystals as affected by factors such as dis-
location density (N0), temperature (T), strain rate ( ), and impurities such as
oxygen and nitrogen may exhibit responses as depicted in Fig. 10.3 (10, 11).

Example 10.2 Dislocated Silicon with Impurities
Figure 10.9 shows stress–strain data for silicon crystals under different dislo-
cations, temperature, and strain rates reported by Yonenaga et al. (11). It can
be seen that the peak or upper yield stress was not affected significantly for
the dislocation free crystals [Fig. 10.9(a)], while it shows significant increase
for the dislocation, N0 � 1 �  as the oxygen concentration increases.
Such an effect is attributed to the locking of dislocations by oxygen atoms dis-
solved in silica crystals because the dislocations become immobile due to

FIGURE 10.9
Stress–strain behavior of silicon doped with different oxygen content (11) (with permission).
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impurity locking, while the crystal is kept at elevated temperature under no
applied stress (11).

The prepeak region of the stress–strain response is usually elastoplastic with
plastic yielding or hardening, during which the yield stresses increase with
plastic deformations (Chapter 7); Fig. 10.9. There occurs a reduction in the
stress after the peak stress, often referred to as softening or degradation, which
results due to the initiation of microcracking (sometimes before the peak
stress), and its growth due to the coalescence of microcracks. For some mate-
rials, microstructural instability occurs at critical locations or disturbance, Dc,
and failure may subsequently occur near the ultimate condition, Du. In the
case of the silicon with impurities, however, the softening may continue up to
the point b in Fig. 10.3(a), and then under the specific combination of N0, T, and

 and after the threshold plastic strains (�t), the material exhibits stiffening or
healing response. Often, the stiffening is higher for greater values of the dislo-
cation density (N0).

10.3.1 Formulation of DSC Model

Figure 10.3 shows a schematic of the response as a combination of hardening
–softening–stiffening behavior. The response, 0–a–b–c, is the basic hardening
–softening behavior, which has been characterized before (Chapter 4),
using Eq. (4.1) as

(10.11)

In this case, the disturbance, D, increases with (plastic) deformation, shown
as 0–a–b, Fig. 10.3(b).

In the case of the stiffening response beyond point b, the material exhibits
higher stress-carrying capacity and is assumed to approach an asymptotic
value (near d). Then, during stiffening, the disturbance decreases, as depicted
by b–d in Fig. 10.3(b).

For the combined hardening–softening–stiffening response, the modified
disturbance function,  in Eq. (10.2) is expressed as (12)

(10.12)

where Dub , Ab , and Zb are parameters for the basic softening behavior;  As

and Zs are parameters related to the stiffening response; and  is given by

(10.13)

where Dus is the ultimate disturbance corresponding to the limiting stiffening
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response, and �t is the threshold value of the deviatoric plastic strain trajec-
tory when the stiffening initiates.

With the modified disturbance, , the DSC incremental equations are mod-
ified as

(10.14)

10.3.2 Validation

Applications of the DSC model for the basic softening behavior exhibited by
silicon crystal (ribbons) with relatively low dislocation densities (N0 � 2 �

) and low oxygen concentration (C0 �  atoms� ) (10) are
given in Example 7.16, Chapter 7; this material does not exhibit stiffening
behavior. Here, we present application of the modified DSC equation (10.14)
for characterizing the behavior of dislocated silicon with high levels of dislo-
cation densities (N0) and oxygen concentration (C0), which exhibits the stiff-
ening response. Figure 10.9 shows laboratory test results for such silicon
doped with oxygen as reported by Yonenaga et al. (11).

The stress–strain data (Fig. 10.9) were used to find the parameters for each
individual curve for the dislocation-free (N0 � 0) and dislocation (N0 � 1 �

 conditions. The elastic modulus, E (slope at the origin), was found
for each stress–strain curve. Its average value for T � 800�C was found to be
2.45 �  Pa, and for T � 900�C, it was found to be 1.67 �  Pa. The RI
response was assumed to be linear elastic.

The disturbance parameters were found using procedures given in Chap-
ters 4 and 7 and are shown in Tables 10.2(a) and (b) for T � 900�C and 800�C,
respectively. The parameters were expressed as functions of the oxygen con-
centration, C0, using the following relations:

(10.15)

where the subscript r denotes reference concentration, C0 � 1 �
accordingly, e.g., Abr is the value of Ab at C0 � 1 �  Table 10.2(c)
shows the parameters in Eq. (10.15). The parameters obtained from the test
with C0 � 4 �  were not used in the “average” relations [Eq. (10.15)];
this test was used as an independent validation.
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The laboratory curves were predicted by integrating Eq. (10.14), in which
the RI behavior,  was defined based on linear elastic response, and the FA
response,  was based on the bulk modulus (K ). The disturbance function

 in Eq. (10.12) was used with the parameters shown in Table 10.2.
Figures 10.10(a) and (b) show comparisons between predictions and test

data for two individual responses: (1) N0 � 0.0, C0 � 2.5 � T �
900�C, and (2) N0 � 1 � C0 � 1.5 � T � 800�C, respec-
tively. The parameters used for these predictions were relevant to the individ-
ual stress– strain data.

Figures 10.11(a) and (b) show comparisons between predictions and test
data for two independent tests: (1) N0 � 0.0, C0 � 4 � T � 900�C,
and (2) N0 � 1 � C0 � 4 � T � 800�C. Here the average
parameters were used to predict independent tests that were not used in find-
ing the parameters. It can be seen from Figs. 10.10 and 10.11 that the DSC
model provides very good predictions of the behavior of dislocated silicon
doped with oxygen, as affected by C0, N0, and T.

TABLE 10.2(a)

Parameters for N0 � 0 at T � 900�C

C0 �
Dub Dus Ab As Zb Zs

2.5 0.5909 0.6558 1.1099 23.9657 �3.6464 1.1196 2.0844
4.0 0.3174 0.6397 2.0156 15.0097 �2.1515 0.7941 1.7377
5.5 0.4815 0.6667 1.3846   7.4037 �1.9060 0.6109 1.6889
9.0 0.4661 0.6260 2.0156   3.5548 �1.2710 0.4148 1.4809

TABLE 10.2(b)

Parameters for N0 � 1 �  at T � 800�C

C0 �
Dub Dus Ab As Zb Zs

1.5 0.4497 0.7512 0.5987   4.0748 �7.2044 0.5637 1.9819
4.0 0.5629 0.4545 1.2385   8.3227 �3.7178 0.6800 1.8443
6.5 0.6624 0.8112 0.7672 11.8467 �2.6796 0.7462 1.7797
9.0 0.7017 — — 15.0097 �2.1515 0.7941 1.7377

TABLE 10.2(c)

Parameters in Eq. (10.15)

Temperature 
(�C) Abr Asr Zbr Zsr �1 �2 �3 �4

800 4.0785 7.2044 0.5638 1.9820  0.7272 �0.6745 0.1912 �0.07341
900 51.2980 5.5514 1.6577 2.3889 �1.4898 �0.8228 0.7683 �0.2669

1017
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10.3.3 Disturbance and Dislocation Density

It was also shown by Desai et al. (12) that disturbance in the DSC and dislo-
cation density can be correlated. The latter is given as [Eq. (3.25a)], Chapter 3
(10, 12) 

(10.16a)

where k is Boltzmann’s constant (� 8.617 � evK);  is the back
stress, Q is the Peierl’s energy (� 2.17 ev), ,  p, and r are material constants
(� 3.1 � , 1.1, and 1.0, respectively), k0 � B0/�0, B0 is mobility (� 4.30 �

 m�s), T	 is absolute temperature, �0 � N�   denotes the observed
stress, the overdot denotes time derivative, and m denotes any point. By
using the stress-based disturbance [Eq. (3.7), Chapter 3], Eq. (10.16a) can be

FIGURE 10.10
Comparisons between observed and predicted individual responses (12) (with permission).
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expressed as

(10.16b)

where  denotes the RI shear stress.
Figure 10.12 shows the plot of the dislocation density vs. axial strain for the

test (10) in Fig. 7.44, Chapter 7, for the curve T � 1100�C, � 4.8 �
and N0 � 1.8 �  This plot is obtained by integrating Eqs. (10.16a) and
(10.16b); here the values of disturbance at various points are used in
Eq. (10.16b) for the DSC predictions. It can be seen that both Eqs. (10.16a) and

FIGURE 10.11
Comparisons between observed and predicted independent responses (12) (with permis-
sion).
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(10.16b) show essentially the same results, implying that the disturbance and
dislocation densities bear a correlation.

10.4 Reinforced and Jointed Systems

Materials are often reinforced to enhance their deformation and strength
properties, e.g., reinforced concrete, reinforced earth, and composites (metallic,
ceramic, etc.). Some materials involve joints or interfaces that exist before the
load is applied or are induced during loading. Structure-foundation systems
and jointed rocks are examples of the former, whereas the latter can occur in
any material that experiences microcracking leading to macro- or finite-sized
cracks. In the case of joints, the material is usually weaker than the parent or
solid material parts; see Fig. 10.13.

Reinforced and jointed material systems can be characterized using the DSC
in two ways: (1) by expressing the observed behavior of the equivalent rein-
forced or jointed composite in terms of the behavior of the solid and the joint
(Fig. 10.13), or (2) by treating the body as made of solid, interfaces or joints,
and then introducing their responses individually, say, in the finite-element
analysis.

10.4.1 Equivalent Composite

In the case of the equivalent composite, the observed or actual behavior of the
composite can be expressed as (Chapter 2)

(10.17)

FIGURE 10.12
Comparison of dislocation density vs. strain with Eq. (10.16): independent tests (12) (with
permission).
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where   and  denote the observed stresses in the composite, solid,
and joint�interface, respectively [Fig. 10.13(a)]. Then it will be necessary to
conduct laboratory tests on specimens of the solid and joint to measure and
define their observed behavior. The observed behavior of the solid,  and
that of the joint,  can be expressed in terms of the responses of their respec-
tive RI and FA states:

(10.18a)

and

(10.18b)

where  and  are the RI stresses for the solid and joint, respectively, 
and  are the FA stresses for the solid and joint, respectively, and Ds and Dj

are disturbances for the solid and joint behavior, respectively [Fig. 10.13(b)].

FIGURE 10.13
Representations for composite material systems.
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With the foregoing formulation in the FE procedure, the elements in the
mesh will be considered as a composite containing a joint or interface with
surrounding elements [Fig. 10.13(a)]. The equations for such a composite
element can be expressed as

(10.19)

where the stiffness

(10.20)

where denotes the applied load, and  is the constitutive matrix for
the composite element, which is expressed in Eq. (10.17).

10.4.2 Individual Solid and Joint Elements

In this approach, the structure is divided into solid and joint or interface
elements. Then the behavior of each is characterized using the DSC model.
This method is similar to the standard FE method in which solid and joint
regions are treated as individual elements with definition of properties for
material (solid or joint) for each element.

Example 10.3 Reinforced Earth and Jointed Rock
We present an example of reinforced earth in which both preceding
approaches were used (13). Figure 10.14 shows the finite-element mesh for a
laboratory triaxial test with cylindrical specimen reinforced by a single layer
of nonwoven geotextile (R1NW) at the midheight of the specimen. Tests were
also performed with two layers of the nonwoven geotextile placed at one
third and two thirds of the specimen’s height (R2NW), and two layers of
woven geotextile at one third and two thirds height (R2W). A number of tri-
axial tests were also performed for the natural sand specimens, without rein-
forcement. The soil was Enmore sand procured from the coastal area in India
near the City of Chennai (old Madras). The physical properties of the sand
are as follows:

Specific gravity � 2.64
Uniformity coefficient � 1.63
Median size, D50 � 0.60 mm
Maximum dry density � 18.0 KN�

Minimum dry density � 16.0 KN�

k
˜mdq

˜
m

dQ
˜

m�

k
˜m B

˜
TC

˜ m
a B

˜
dV��

dQ
˜

m C
˜ m

a

m3

m3



© 2001 By CRC Press LLC

The tests were performed under three confining pressures in the range of
100 to 300 kPa, with different stress paths, compression �CTC (Sr � 1.00) and
extension � RTE (Sr � �1.0); see Chapter 7, Fig. 7.13.

TABLE 10.3(a) 

Material Parameters for Natural and Reinforced Soils

Parameter Natural Soil
Reinforced Soil

(R1NW)
Reinforced Soil

(R2NW)
Reinforced Soil

(R2W)

Elastic constants
k  600.00  500.00  230.00  690.00
n	 0.95 0.96 1.06 0.90
� 0.34 0.37 0.36 0.34

Ultimate
parameters

� 0.071 0.072 0.088 0.089
� 0.610 0.687 0.727 0.667

Phase change
parameter, n

2.54 2.98 3.07 2.90

Hardening
parameters

a1 0.366 � 0.405 � 0.397 � 0.273 �
�1 0.711 1.611 1.327 0.721

Nonassociative
parameter, �

0.228 0.276 0.242 0.257

From Ref. 13, ©John Wiley & Sons Ltd. Reproduced with permission.

TABLE 10.3(b) 

Material Parameters of Interface Between Soil and Nonwoven and Woven 
Geotextiles

Parameter
Nonwoven
Geotextile

Woven 
Geotextile

Elastic constants (k N�m2�m) Ks 3,000 8,000
Kn 60,000 90,000

Ultimate parameters � 0.722 0.656
Phase change parameter  n 2.84 2.50
Hardening parameters  a1 0.098 0.253

�1 0.675 0.241
Nonassociative parameter � 0.875 0.802

See Chapter 11 for details of interfaces.

TABLE 10.3(c)

Parameters for Geotextile Reinforcement

Properties Nonwoven Geotextile Woven Geotextile

Material�color Polypropylene�white Polypropylene�white
Thickness (mm) 2.8 0.64
Stiffness modulus (k N�m) 23.13 660
Yield strength (k N�m) 11.65 19.93

10 3� 10 5� 10 4� 10 3�
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Tests for the sand-reinforcement interfaces were conducted by using a test
box of 6.0 � 6.0 cm size, in which the lower half of the box contained a steel
block over which the geotextile was wrapped and fixed. The upper half of the
box was filled with dry sand. Normal stresses of 50, 100, and 100 kPa were
used with shear displacement rate of 0.25 mm/min.

The elastic moduli and the yield strength of the geotextile were determined
from tension tests conducted by using a Universal Testing Machine (13).

The HISS �0- and �1-plasticity models (Chapter 7) were used to characterize
the behavior of the sand and interface (Chapter 11), while the woven and
nonwoven reinforcements were modelled using the von Mises yield crite-
rion. Table 10.3 (a), (b), and (c) shows the HISS parameters for the natural
and reinforced sand, interface, and the parameters for the geotextiles,
respectively. In the case of the sand, the elastic modulus, E, was expressed as
a function of the confining stress, 
3, as

(10.21)

where k and n	are parameters and pa is the atmospheric pressure constant.
Analysis The observed hardening behavior of the natural and reinforced

soil with woven geotextile is compared in Fig. 10.15 (a) and (b) for the woven

FIGURE 10.14
Finite-element discretization of reinforced soil sample (13). ©John Wiley & Sons Ltd. Repro-
duced with permission.
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geotextile. Figure 10.16 shows similar comparisons for nonwoven geotextiles.
It can be seen that the reinforced soils exhibit lower values of the hardening or
growth function, �; from Eq. (7.2), Chapter 7, the lower the value of �, the
higher the value of plastic strains, which signifies increased yielding. Thus,
reinforcement causes higher levels of yielding, and an increase in the number
of layers of reinforcement increases yielding.

FIGURE 10.15
Comparisons for yield behavior of natural and reinforced soil (R2W) (13) ©John Wiley &
Sons Ltd. Reproduced with permission.
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Figure 10.17 shows yielding behavior for the interfaces with nonwoven and
woven reinforcements. It indicates that the growth function, �, is lower for
nonwoven geotextile; i.e., the yielding is higher for the nonwoven geotextile
compared to that for the woven geotextile.

10.4.3 Validation for Test Results with HISS Model and FE Method

The triaxial stress–strain–volume change behavior was predicted using two
methods: SPM and FEM. In the SPM method, the specimen was treated as an
equivalent composite element. The predictions were obtained by integrating
the incremental constitutive equations [Eq. (10.17)], in which the HISS param-
eters for the composite reinforced soil were used; see Table 10.3.

In the FEM, the specimen was considered to be made of three components:
natural soil, reinforcement (geotextile), and interface between the soil and
reinforcement. The properties of individual components were provided in the
FEM (Table 10.3).

The validations were obtained by using (average) parameters for the tests
which were used for finding the parameters (Group A). Then validations were
obtained for independent tests not used for finding the parameters (Group B).
Only typical results are given below.

Figures 10.18 and 10.19 show comparisons between predictions and test
data for the reinforced specimen (R2W) for the reduced triaxial extension
(RTE) and triaxial compression (TC) stress paths (Fig. 7.13), respectively, for
Group A and Group B analyses. It can be seen that both the SPM and FEM pre-
dictions correlate well with the test behavior.

FIGURE 10.16
Comparisons of yield behavior for natural soil and reinforced soil, R1NW and R2NW:
extension test (Sr � �1.0)(13). ©John Wiley & Sons Ltd. Reproduced with permission.
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10.4.4 Jointed Rock

The FEM approach, in which each component is treated individually, was
applied to analyze the (laboratory) behavior of jointed rock masses using the
DSC model (14). It was found that the DSC model provided very good corre-
lation with the laboratory behavior of a rock mass with three inclined joints.

The foregoing results show that the special version, the HISS plasticity
model of the DSC, provides satisfactory simulation of the behavior of the rein-
forced soil. Both the equivalent composite and the component approaches can
be used for characterizing the behavior of a reinforced composite. The DSC
model including softening or degradation would also provide satisfactory results,
as was reported by Chia et al. (14).

Characterization of soils and interfaces, and FE predictions for a Tensar
(plastic) reinforced retaining wall using the DSC, are given in Chapter 13.

FIGURE 10.17
Plots of yield surfaces for soil-reinforcement interfaces (13). ©John Wiley & Sons Ltd. Re-
produced with permission.
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10.5 Rest Periods:  Unloading

During rest periods and under unloading, some materials may experience
healing or strengthening due to interparticle rebonding under chemical effects
and/or reduction in microcracks; the latter, however, will depend on the stress
state (compressive or tensile) existing in the material before unloading took
place. It is difficult to identify the effect of chemical rebonding. We now give
two examples of microstructural changes due to unloading.

We first consider the example of the behavior under uniaxial tensile loading
for a flat specimen of a fiber-reinforced ceramic composite (15, and Example
5.6, Chapter 5). 

Figure  10.20 shows the plots of crack density, Cd vs.  and disturbance,
Dv vs.  under a cycle of (virgin) loading, unloading, and reloading. The
value of Cd is computed using Eq. (6b), Example 5.6 of Chapter 5, and that for
disturbance, Dv [Eq. (3.9), Chapter 3], is computed using measured (average)
ultrasonic P-wave velocity ; see Fig. 10.21 (15).

It can be seen from Fig. 10.20 that during the virgin loading, the crack den-
sity and disturbance increase with shear stress,  During unloading both
decrease because, as the tensile stress is removed, the microcracks close with

FIGURE 10.18
Comparisons for stress–strain–volume change response of reinforced soil R2W: RTE path,

3 � 200 kPa (Group A) (13). ©John Wiley & Sons Ltd. Reproduced with permission.
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a consequent reduction in the disturbance. Upon reloading, both Cd and Dv

increase again; at the end of reloading, the virgin loading response resumes.
Thus, during unloading, as the disturbance decreases, the material exhibits a
healing or stiffer response [Eq. (10.14)].

On the other hand, if the material is under compressive stress state when
unloading occurs, the situation can be different. Figure 10.22 illustrates this
phenomenon for the behavior of a cemented sand tested under multiaxial
compressive loading, e.g., the CTC stress path (
1 > 
2 � 
3) (Fig. 7.13,
Chapter 7). Figure 10.23 shows the plot of measured  vs.  for the
cemented sand used to compute Dv.

During the virgin loading, both Cd and Dv (Fig. 10.22) increase. Under
unloading, both increase because as the compressive stress is removed, the
microcracks can experience opening, resulting in an increase in the distur-
bance. During reloading, Cd and Dv first decrease due to the coalescence of
microcracks, and then they increase. Thus, mechanical healing during unload-
ing is not present, except during a part of the reloading.

Hence, the existence of healing or stiffening due to mechanical unloading
depends on the stress state. Healing due to chemical effects can occur simulta-
neously during unloading, but requires additional studies and research for its
definition and quantification.

FIGURE 10.19
Comparisons for stress–strain–volume change response of reinforced soil R2W: TC path,

3 � 200 kPa (Group B) (13). ©John Wiley & Sons Ltd. Reproduced with permission.
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Science)..
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The subject of contacts between two similar or dissimilar materials has been
studied for a long time. The classical friction laws by Coulomb and Amontons
considered the case of dry friction between (rigid) bodies. Subsequently, the pur-
suit for understanding the complex response at contacts as affected by many
practical factors beyond those considered in the classical laws has continued.

In engineering systems contacts are often referred to as interfaces or joints
between two materials. Such discontinuities may preexist or are induced in
a deforming material system. Existence of discontinuities in a material
body whose parts around and beyond the discontinuities may be continu-
ous can lead the overall system to be discontinuous. Hence, the theories
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based on continuum mechanics may not be applicable to characterize its
response. As described in Chapter 2, an initially continuous body may
experience internal microcracking during loading. Up to a certain extent of
microcracks, the material may still be treated as continuous. However, the
microcracks often coalesce and lead to zones of macrolevel fractures. As a
result, the material may no longer be treated as a continuum. In fact, such
finite-fracture discontinuities may represent interfaces or joints and need to
be treated as such.

11.1 General Problem

Contacts can occur in metals, ceramics, concrete, rocks and soils, composites,
and structure-medium (soil or rock) combinations. In mechanical and aero-
space engineering, particularly in machinery and aircraft structures, metal-to-
metal contacts are common, and behavior is often treated under the subject
of tribology, involving motions and resulting wear, tear, and degradation. In
civil engineering, such contacts refer to interfaces in structures and geologic
foundations, between concrete and reinforcement, and joints in rock masses.
Examples of contacts in the electronic industry can involve interfaces and
joints in electronic assemblies such as chip-substrate systems.

Although a number of models have been proposed for the contact prob-
lem, its behavior has not yet been fully understood and characterized, par-
ticularly when we consider the number of significant factors that influence
the behavior. In the following, we provide a brief review of various models
before describing the rationale for the development and use of the models
based on the DSC.

11.2 Review

The subjects of contacts, friction, interfaces and joints involve extensive
research and publications. Comprehensive reviews are available in (1–8). The
objective here is to provide a limited review, particularly with respect to con-
stitutive models leading to the development of the DSC.

Amontons’ (9) and Coulomb’s law of friction can be considered to be the
first formal constitutive model to describe the response of two bodies in con-
tact [Fig. 11.1(a)]. The law is expressed as

(11.1)

where F is the tangential or shear force parallel to the plane of contact, �
is the coefficient of friction, and N is the force normal to the contact with

F �N�
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nominal area A0. The above law is valid for dry friction between rigid bodies,
assumes � to be constant, and provides a pointwise description leading to
definition of gross sliding of one body relative to the other. In reality, however,
the contact involves mated or nonmated asperities [Fig. 11.1(b)] and the bod-
ies in contact can be deformable. As a result, the pointwise or local definition
is not sufficient, and consideration needs to be given to nonlocal effects due
to factors such as nonuniform properties and lack of complete contact. The
latter would require that the contact area  be smaller than the nominal area,
A0, and its effect on the behavior needs to be considered.

For including elastic component of response, Archard (10) proposed the
following law:

(11.2)

where m is the exponent whose value varies between 2�3 and 1; for purely
elastic behavior, m � 2�3, and for ductile contacts m � 1.

Oden and Pires (11) have discussed the limitations of the Coulomb friction
law, in particular its local and pointwise character, and presented variational
principles by treating the materials as elastic. The law in Eq. (11.1) was mod-
ified as

(11.3a)

where s is the average shear strength of the interface and Ar is the weighted
actual contact area, given by

(11.3b)

FIGURE 11.1
Schematic of contact and asperities.
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where A1, A2 … are the contact areas of individual deforming asperities, N1,
N2 … are the normal loads on the asperities, and p0 is the approximately con-
stant local plastic yield pressure. Substitution of Ar in Eq. (11.3a) gives

(11.3c)

Here s�p0 � �. Thus, F is defined over the weighted area, Ar.
In the general areas of friction and contact mechanisms, models based on

strength, limit equilibrium, elastic and classical elastoplastic theories have
been presented in (1, 2, 4, 6–8, 12–18). In the context of interfaces in structure-
medium (soil) and joints in rock, models based on similar and advanced con-
cepts have been presented in (3, 5, 19–42).

11.2.1 Comments

As indicated earlier, a number of significant factors influence the behavior at
interface or joint. They include nonlocal considerations, particularly with
respect to the normal behavior, nonlinear effects involving elastic, plastic and
creep strains, microcracking, degradation and softening, stiffening or healing,
existence of filler materials (oxides, gouge, etc.), fluids and type of loading
(static, cyclic, environmental, etc.). Although the foregoing available models
allow for strength, elastic, and limited plasticity response, they usually do not
allow for factors such as continuous yielding or hardening, microcracking and
softening leading to postpeak degradation, stiffening, and viscous (time)
effects. The objective here is to present the unified DSC model that allows for
these factors, in addition to those included in previous models. It is also noted
that many of the previous models can be derived as special cases of the DSC.

It is felt that the interface behavior needs to be treated as a problem in consti-
tutive modelling in which the foregoing factors are integrated. This is in contrast
to some of the previous models, which have treated contact or interface behav-
ior by introducing constraints (kinematic and�or force) to allow for the effects of
special characteristics such as relative motions (sliding, debonding, etc.).

Another important issue is the implementation of the models in solution
(computer) procedures with due consideration to factors such as robustness,
accuracy, and stability of the numerical predictions. This aspect is handled by
using the concept of the thin-layer element, in which the interface zone is sim-
ulated as a thin zone of finite thickness, t (36). In the finite-element procedure,
the interface zone is treated as a regular element whose constitutive behavior
(with the DSC) is defined based on appropriate laboratory tests using special
shear testing devices.

Models based on the DSC that include elastic, plastic, and creep deforma-
tions, microcracking, and (asperity) degradation response have been pre-
sented in (42–51). The DSC approach allows for the nonlocal effects and
characteristic dimension and hence leads to computations that are unaf-
fected by spurious mesh dependence (52–54). It may be mentioned that

F s
p0
-----N �N� �
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these models allow realistic characterization of the normal response dis-
cussed before (11, 12, 36–39, 41) and the coupled shear and normal response.
Particular attention is given here to the (laboratory) measurements of the nor-
mal response (55), which is discussed subsequently under testing.

The following descriptions include the DSC models for interfaces and
joints, laboratory testing for the calibration of material parameters, and
implementation of the models in numerical procedures using the thin-layer
element. The latter is described first, as the DSC is formulated with respect to
the thin-layer simulation of interfaces and joints.

11.3 Thin-Layer Interface Model

An interface can involve a number of configurations. The interface between
two metallic bodies can be considered clean in the sense that there is no third
material between them. Then the smeared interface zone can entail different
levels of roughness defined by the surface (microlevel) asperities [Fig. 11.2(a)].
The contact can be very rough to medium-rough to smooth, depending on the
characteristics (height, length) of irregular asperities. It may be noted that
even a “smooth” contact involves asperities at different levels (macro, micro,
etc.); hence, an ideally smooth surface is essentially hypothetical.

It may happen that when two bodies made of different materials are in con-
tact, like steel (pile) and soft clays [Fig. 11.2(b)], there exists a finite “smeared”
zone between the two that behaves as an interface [Fig. 11.2(e)].

In the case of rock joints, it can happen that the contact is filled with a third
(e.g., gouge) material that acts as a bulk interface [Fig. 11.2(c)]. Similar situa-
tions occur in the case of chip-substrate system joined together, say, by sol-
ders. Here, the filled zone can be treated as the bulk interface [Fig. 11.2(d)]. It
may be noted, however, that in Fig. 11.2(b), (c), and (d), other interfaces occur
between the material in the interface and the bodies in contact, which may
involve additional considerations such as diffused layers, intermetallics, and
surface effects. These are not considered at this time.

The objective herein is to present a model for the bulk interface or joint that
can provide a realistic simulation of relative motions between the two bodies.
The interface zone is referred to as thin-layer (36, 56) with thickness, t, that can
be treated as equivalent or smeared zone between two materials [Fig. 11.2(e)].
If characterized appropriately, it can provide, in a weighted sense, model(s)
for the response at the interface. Even in the case of clean contact [Fig. 11.2(a)],
it can be possible to develop the dimension (thickness) of the equivalent
“smeared” zone, as affected by the asperities, to represent the interface
behavior. Thus, in all cases in Fig. 11.2, it is assumed that the interface zone
can be represented by an equivalent dimension with thickness, t [Fig. 11.2(e)].

Then the vital question arises as to how to determine the thickness, t. This
can be difficult. One of the direct ways would be to perform tests in which the
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deformation behavior at the interface is measured, and its significant dimen-
sion (t) is determined. Both nondestructive and mechanical testing are possible.
In the case of nondestructive tests such as X-ray computerized tomography and
acoustic methods, it can be possible to measure the dimensions of the influ-
ence zones around the asperities. It is also possible to perform integrated
numerical (finite-element) predictions and (laboratory) observations to
develop empirical criteria for defining the thickness, t (36, 56). We shall dis-
cuss these aspects later.

FIGURE 11.2
Examples of interfaces and joints.
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11.4 Disturbed State Concept

Now, as the interface is represented by an equivalent thickness, t [Fig. 11.3(a, b)],
it can be treated as a deforming material element that is composed of the rel-
ative intact (RI) and fully adjusted (FA) parts. The task now is to define RI and
FA behavior for the interface zone.

11.4.1 Relative Intact Behavior

The RI behavior can be represented by using theories such as linear (nonlin-
ear) elasticity, elastoplasticity (�0-model for interfaces and joints), ther-
moelastoplasticity, and thermoviscoplasticity (Chapters 3–10).

If the (linear) theory of elasticity is used, the RI behavior can be simulated
using two moduli, shear stiffness, ks, and normal stiffness, kn (Fig. 11.4). The
values of these moduli can depend on such factors as the (initial) normal
stress (�n0) and roughness (R0). Thus,

(11.4a)

(11.4b)

FIGURE 11.3
Thin-layer element and material parts in RI and FA states.

ks ks� �n0, R( )

kn kn� �n0, R( )
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11.4.2 Stress-Displacement Equations

For the two-dimensional idealization [Fig. 11.3(c)], the incremental equations
for the RI behavior with the nonlinear piecewise elastic response are
expressed as

(11.5a)

where � and �n are the shear and normal stresses, respectively, the superscript
t denotes tangent shear and normal stiffnesses, ur and vr are the relative shear

FIGURE 11.4
Schematics of shear and normal behavior.
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and normal displacements, respectively, i denotes RI or continuum response,
and d denotes an increment. If it is assumed that the elastic shear and normal
responses are uncoupled, Eq. (11.5a) will reduce to

(11.5b)

or

(11.5c)

where d � [d� d�n], d � [dur dvr], and  is the interface or joint tangent
constitutive matrix.

As discussed earlier, the net contact area involves contacts at the asperities
between the two bodies and is usually smaller than the nominal or total area
of the contact, A0. In order to account for the nonlocal effects, it is necessary
to introduce weighting functions. In the DSC, such weighting is introduced
through the disturbance function, D (see later). However, based on the nom-
inal area, the shear and normal stress are first defined as

(11.6a)

(11.6b)

With the thin-layer element, the stiffness moduli can be expressed approx-
imately as

(11.7a)

(11.7b)

where G and E are the equivalent shear and elastic moduli for the interface,
respectively.

Now, the relative shear displacement, ur, is expressed as [Fig. 11.3(d)]

(11.8a)

Therefore,

(11.8b)

and

(11.9a)
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Hence,

(11.9b)

where � and 	n are the shear and normal strains, respectively. Then, Eq. (11.5)
can be written as

(11.10a)

or

(11.10b)

Here, tangent values of G and E are obtained from laboratory shear and
normal behavior (Fig. 11.4) using Eq. (11.7), and  � [� 	n] is the vector of
interface strains.

11.4.3 Elastoplastic Models

The RI behavior can be simulated using an elastic or elastoplastic model.
Here, the �0-version of the HISS plasticity family (Chapter 7) is considered.

It is shown (42, 46, 47) that for the two-dimensional interface (Fig. 11.3), the
yield function, F (Eq. 7.1, Chapter 7) can be specialized as

(11.11)

where  � �n � R, R is the intercept along 
ve �n (Fig. 11.5) and is related
to adhesion, c0, the stress quantities are nondimensionalized with respect to
pa, n and � are the phase change and ultimate parameters, and � is the hard-
ening or growth function:

(11.12)

where a and b are the hardening parameters and � is the trajectory of irrevers-
ible or plastic shear and normal displacements (strains):

(11.13)
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Here,  and  are the relative plastic shear and normal displacements,
respectively. The total values of relative shear (ur) and normal (vr) displace-
ments can be expressed as (44)

(11.14a)

(11.14b)

where  and  are the elastic deformations of the contact asperities,  and
 are the plastic deformations of the asperities, and  and  are the slip

(irrecoverable) displacements, respectively. As the last two are difficult to
separate and are irrecoverable, they are combined as  and  as

(11.15a)

(11.15b)

Then,  and  are used in the modelling.
As in the case of solids (Chapter 7), the surfaces given by F in Eq. (11.11)

plot as continuous yield surfaces, which approach the ultimate yield surface,
Fu, when � � 0. A schematic of F in the � – �n stress space is shown in Fig. 11.5.
Here, the function F will change with �, depending on the roughness of the
interface (43, 44).

Very often, the ultimate yield surface or envelope that represents the asymp-
totic stress states to the observed stress–strain (� 
 ur) curves (Fig. 11.4) will be

FIGURE 11.5
Yield and ultimate surfaces.
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an (average) straight line with slope equal to  (Fig. 11.5) [Eq. (11.11)]. If the
envelope is curved, F can be expressed as (44)

(11.16)

where q is a parameter; its value equals 2 for the straight-line envelope. As
noted before, � � 0 at the ultimate, hence, Eq. (11.16) gives

(11.17a)

which, for q � 2, leads to

(11.17b)

that is,

(11.17c)

For the linear ultimate envelope, R can be found as

(11.17d)

11.4.4 Fully Adjusted State

As in the case of solids, the material in the FA state can be characterized such
that it (1) has no strength at all, that is, it can carry no shear or normal stress,
or (2) is a constrained liquid that can carry normal stress but no shear stress, or
(3) is at the critical state at which it can continue to carry shear stress reached
up to that state for given (initial) normal stress with no change in volume or
normal displacement. The first two conditions are straightforward and have
been discussed before (Chapter 3). The idea of a critical state for joints and
interfaces is presented below, based on experimental and analytical studies.

11.4.5 FA as the Critical State

The idea of the critical state for the behavior of joints and interfaces can be
based on their observed response. Figure 11.6 shows schematics of � vs. ur,
and normal displacement during shear, vr vs. ur for typical interface or joint.
Both initially smooth and rough joints for a given �n approach an invariant
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shear stress, , and normal displacement, , through compaction, and compac-
tion followed by dilation [Fig. 11.6(b)]. Based on similar results, Archard (10) pro-
posed the following expression for critical shear stress and normal stress, �n:

(11.18)

where c0 is the critical value of  when �n � 0 (related to the adhesive
strength),  is the normal stress at the critical state, and c1 and c2 are param-
eters for the critical state. Equation (11.18) is similar to the critical-state line
equation for normally consolidated soils [i.e., relevant to the second term in
Eq. (11.18)]:

(11.19)

FIGURE 11.6
RI and FA states during shear.
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(see Chapter 7). Here, c1 is analogous to  and c2 is analogous to the power
of , which is unity. Indeed, Eq. (11.18) can represent a critical-state curve
[Fig. 11.7(a)] instead of straight line (Chap. 7) and includes the interface adhe-
sion or cohesion (c0).

Based on shear test on joints, Schneider (57, 58) reported that during shear
loading, a joint under given normal stress would approach a critical value of
normal displacement (dilation),  [Fig. 11.6(b)], and its relation with �n is
given by

(11.20)

where  is the critical or ultimate dilation when �n � 0 [Fig. 11.6(b)] and  is a
material parameter. As shown in Fig. 11.6(b), for each �n there occurs an associ-
ated value of critical normal displacement, , , and so on. Equation (11.20)

FIGURE 11.7
Behavior at critical (FA) state.
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is similar to the void ratio–pressure relationship in the critical-state concept
(Chapter 7).

(11.21)

where  is the critical void ratio for given mean pressure, p � J1�3 � (�1 � �2 �
�3)�3, 
 is a parameter, and  is the void ratio corresponding to p � unity.

Thus, as can be seen in Fig. 11.7(b), for a given value of �n, the interface or
joint approaches the critical (or FA) state at which the shear stress, , and the
normal displacement, , remain the same, and shear displacements (ur) con-
tinue under constant . 

Then Eqs. (11.18) and (11.20) can be used to characterize the behavior of
parts in the joint or interface zone that are in the FA state. Now we consider
the issue of the disturbance function, D.

11.5 Disturbance Function

The disturbance function, D, can be defined based on the shear stress (�) vs. rel-
ative shear displacement (ur) and�or relative normal (vr) vs. ur curves (Fig. 11.8).
In the case of the former [Fig. 11.8(a)]

(11.22a)

and for the latter [Fig. 11.8(b)]

(11.22b)

For saturated interfaces, the effective normal stress (  � � 
 p ) data can
be used to define the disturbance [Fig. 11.8(c)]:

(11.22c)

Details for the evaluation of RI normal stress, , are given in Chapter 9.
As discussed in Chapter 7, for cyclic behavior, disturbance as a function of

cycles, N (time), is calculated based on the RI and peak values of the quanti-
ties, e.g. [Fig. 11.8(d)];

(11.22d)
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The disturbances, Eq. (11.22), can be expressed in terms of plastic relative
displacement trajectory, �,

(11.23a)

where � is composed of both the deviatoric and normal components [Eq.
(11.13)]. It can be also expressed in terms of the normal (�v) or deviatoric (�D)
component:

(11.23b)

and

(11.23c)

FIGURE 11.8
Disturbance based on different tests.
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where Du is the ultimate value of D at the residual which can be adopted to
be unity, as all responses asymptotically tend to D � 1, and A and Z are
parameters. For the shear behavior, they will be A� and Z�, and for volumetric
(normal displacement) they will be An and Zn. The value of Du corresponding
to the residual state can be calculated using Fig. 11.8; a schematic of D vs. �D

is shown in Fig. 11.9.

11.6 Incremental Equations

The incremental DSC equations for solids are given by (Chapter 7)

(11.24a)

or

(11.24b)

FIGURE 11.9
Disturbance vs. deviatoric displacement (strain) trajectory.
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The interface can be treated as three-dimensional. Here the formulation is
presented by assuming the two-dimensional idealization (Fig. 11.3), where
only the shear stress (�12 � �) and the normal stress (�22 � �n) are significant
(42, 44, 56), and Eq. (11.24) specializes to

(11.25a)

(11.25b)

or

(11.25c)

where  is the RI constitutive matrix,   is the FA constitutive matrix, and
�R � 
  and �nR � 
  are the relative stresses. We assumed the
same D for the shear and normal responses.

If D � 0, Eq. (11.25c) reduces to RI equations as

(11.26)

For (linear) elastic RI response,  will be uncoupled and composed of
shear and normal stiffnesses, ks and kn. For elastoplastic characterization, 
matrix will be coupled, and symmetric or nonsymmetric depending on the
associative or nonassociative model used.

Now, assume that the FA displacement can be expressed as

(11.27a)

where  and , and  is the relative motion
parameter (Chapter 4). Also, dD can be derived as (Chapter 4)

(11.28)

Then, Eq. (11.25) can be written as

(11.29a)

or

(11.29b)
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where   and  � [�R�nR]. Here matrix   will be cou-
pled and nonsymmetric. Analysis with Eq. (11.29) can be complex and
require special iterative schemes. Hence, as a simplified approximation, 
can be assumed as zero.

11.6.1 Specializations

If the FA is assumed to carry no stress at all, as in the case of the continuum
damage model (59),   and  � 0 and Eq. (11.25) reduces to

(11.30)

where  . Such a model is not appropriate, as it does not include
the interaction between the RI and FA parts. As a result, it would include spu-
rious mesh-dependent effects (Chapter 13).

If it is assumed that the FA part can carry normal stress but no shear stress
like a constrained liquid (Chapter 4), Eq. (11.25) would reduce to

(11.31a)

or

(11.31b)

where  is the constitutive matrix for the RI (elastic, elastoplastic-�0, etc.)
material,  and .

Now, by using Eq. (11.18), we have

(11.31c)

If the relation between  and �n is linear, c2 � 1 and

(11.31d)

where c1 is the slope of the average straight line (Fig. 11.7).
If the FA part is assumed to be at the critical state, ,  and ,  need

to be evaluated based on Eqs. (11.18) and (11.20). This would require an iter-
ative analysis. To simplify the formulation, it can be assumed that the normal
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stresses are equal, i.e., . Then, using Eq. (11.31d), Eq. (11.25) can be
expressed as

(11.32)

11.6.2 Alternative DSC Equations

It can be appropriate to treat the interface zone as “solid” material with
(small) finite thickness (Fig. 11.3). In that case, the formulation can be
obtained by using the elastoplastic (RI) and critical-state (FA) models for
interface treated as a solid material (Chapter 7).

The stress �x (Fig. 11.3) can be assumed to be negligible, and the formu-
lation can be obtained in terms of the shear stress, �, and normal stress (�n �
�y) (56), with corresponding shear and normal strains, � and 	n, respec-
tively [Eqs. (11.8) and (11.9)]. Furthermore, the disturbance, D, can be
expressed (separately) in terms of shear and normal responses as in Eqs.
(11.23b and c).

Now Eq. (11.25) can be written as

(11.33)

Then   and  can be obtained using the critical state, Eqs. (11.18) and
(11.21), as

(11.34a)

(11.34b)

where e0 is the initial void ratio of the interface material and the linear relation
is assumed between  and  (Fig. 11.7). The equations can be simplified by
assuming that , , and D � Dr � Dn:

(11.35)

When the interface zone is treated as the “solid” thin-layer element, we
need parameters relevant to the DSC/HISS models for solids. They can be
determined from interface shear tests by using appropriate assumptions and
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transformations, which are given below (here, the subscripts j and s denote
quantities relevant to interface and solid, respectively):

Assumptions: �j � ; �nj � pj � J1s �3
Elastic: for E and G, use Eq. (11.7)
Plasticity: �3.0

Rs � . Rj

n from Eq. (11.37) below
a and b from Eq. (11.12), with �s � �j

Critical state:  � �3.0

s from the slope of the ln e vs. ln pj plot

� void ratio, Eq. (11.21)
Disturbance: Du, A, and Z, Eq. (11.22)

11.7 Determination of Parameters

The DSC model with the elastoplastic �0-version for the RI response for inter-
faces involves the following constants:

The procedures for finding the above parameters are essentially similar to
that for solid materials (Chapter 7). They are described briefly below.

Elastic. The shear stiffness, ks, and normal stiffness, kn, are found as (aver-
age) unloading slopes of � vs. ur and �n vs. vr curves (Fig. 11.10), respectively.
If they are considered to be variable in a nonlinear elastic model, they can be
expressed as functions of factors such as � and �n.

Plasticity. The parameter � is determined from the slope of the ultimate
envelope in �–�n space [Fig. 11.11(a)]. The value of q for the curved envelope
is found from (here the superscript � is dropped for convenience)

(11.36a)

Model Constants Comment

Elastic ks, kn

Plasticity (RI) a, b, n, and � Straight ultimate 
envelope

a, b, n, �, and q Curved ultimate
envelope

Critical state (FA) None Zero strength
kn Normal strength
c0, c1, c2; , Critical state

Disturbance Du, A, Z If D � D� � Dn
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where �u is the ultimate shear stress (� � 0). The value of q is found by writing
Eq. (11.36a) as

(11.36b)

Then the plot of ln �u vs. ln �n provides the value of q from the slope of the
average line [Fig. 11.11(b)]. This and subsequent figures for other parameters
are relevant to test data for various joints (44), e.g., Example 11.2.

The phase or state change parameter, n, is evaluated on the basis of the
state of stress at the transition point [Fig. 11.6(b)], where the normal dis-
placement is zero or changes from compression to dilation. Then, based on
the substitution of � from Eq. 11.16 in the expression for  , the equa-
tion for n is derived as

(11.37)

where  and  are the stresses at the transition point. In the case of hard
materials, the compactive response may be very small. In that case, the

FIGURE 11.10
Shear and normal stiffnesses: (a) shear, ks; (b) normal, kn.
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hardening parameters a and b [Eq. (11.12)] and n can be found simulta-
neously by first writing Eq. (11.16) as 

(11.38a)

and then from Eq. (11.12a)

(11.38b)

FIGURE 11.11
Determination of ultimate and critical parameters: (a) plot for �; and (b) plot for q (44, 64).
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where � is computed at various points on the � 
 ur and �n 
 vr curves
[Fig. 11.12(a)] for stresses (� and �n) at those points. Then Eq. (11.38b) is
written for various points, and a least-square fit solution provides values
of a, b, and n.

The values of a and b can also be found by writing Eq. (11.12) as

(11.39)

The values of � are computed at various points on the curves [Fig. 11.12(a)]
and those of � for those points are obtained from Eq. (11.16). Then a plot of
ln� vs. ln � provides values of a and b as intercept when ln � � 0, and the
slope of the average curve [Fig. 11.12(b)]. The parameter b denotes rate of
hardening, and a is the value of � when � � 1, i.e., at a high value of the plastic
displacement trajectory. The value of a is usually small and needs to be deter-
mined as precisely as possible.

The critical-state parameters are found by writing Eq. (11.18) as

(11.40)

FIGURE 11.12
Determination of hardening parameters.
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Here, the value of c0 is obtained from a plot of  vs. �n when �n � 0 (Fig. 11.7).
Then the plot of ln  vs. ln (�n) [Fig. 11.13(a)] provides the values of c1 and c2

as the intercept when ln �n � 0 and the slope of the average line, respectively.
The parameters in Eq. (11.20) are found by writing it as

(11.41)

The plot in Fig. 11.13(b) of ln  vs. �n provides values of  and  as
intercept when �n � 0 and average slope, respectively.

The disturbance parameters (with Du � 1) are found by writing Eq. (11.23)
as

(11.42)

The values of D at different points on the observed data (Fig. 11.8) are
found using corresponding curves. For example, for � 
 ur curves, D is found
from

(11.42a)

FIGURE 11.13
Typical plots for critical parameters for rock joint type A: (a) plot for c1 and c2; and (b) plot
for  and  (44). ©John Wiley & Sons Ltd. Reproduced with permission.vr
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The values of �D are found corresponding to the points chosen. Then the
plot of ln[
 ln(1 
 Dr)] vs. ln �D (Fig. 11.14) provides the values of A and Z as
the intercept when ln �D � 0 and the average slope, respectively.

For the case of cyclic loading involving degradation [Fig. 11.8(d)], the dis-
turbance can be expressed in terms of measured shear stress or effective
stress with number of cycles (N). In the case of shear stress, D can be
expressed as

(11.42b)

where  is the peak shear stress at given cycles, and  is the residual shear
stress. Then, Eq. (11.23) is expressed in terms of �D(N), which is the deviatoric
plastic displacement trajectory corresponding to peaks at given cycles. The RI
shear stresses  are determined based on the assumption that the continu-
ation of the first cycle response, in Fig. 11.8(d), characterized using a linear
elastic or elastoplastic (�0) or other model, can provide the RI response by
integrating:

(11.43)

where   is the RI constitutive matrix in which the parameters are found
from the first cycle response. For linear elasticity, the unloading or initial
slope can provide the elastic moduli. For the plasticity (�0) model, the ulti-
mate parameters can be found from quasistatic tests augmented by harden-
ing parameters from the initial part of the first cycle response.

For stress-controlled tests under saturated conditions in which pore water
pressures are measured under cyclic loading, D can be found based on the

FIGURE 11.14
Determination of disturbance parameters (A, Z); assume Du � 1.0 (44). ©John Wiley & Sons
Ltd. Reproduced with permission.
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effective normal stress  vs. N relation [Fig. 11.8(c)]. The RI values of`
are obtained by treating the first cycle � 
 ur response as RI. Then

(11.44a)

where  is the observed stress given by

(11.44b)

where  is the total normal stress and p is the measured pore water pressure.

11.7.1 Mathematical and Physical Characteristics of the DSC

In modelling interfaces and joints, it is necessary to account for the nonlocal
consideration with appropriate attention to the normal behavior. Furthermore,
the microcrack interaction in the interface zone as affected by deformations of
asperities needs to be included. Also, as the material in the interface is not a
continuum and involves discontinuities due to microcracks and fractures,
characteristic dimension should be a part of the model (Chapter 12). The DSC
model allows for these factors implicitly within its framework (52–54).

Assuming that the same disturbances apply for the shear and normal
behavior, the total observed stresses,  and , in the DSC are given by

(11.45a)

(11.45b)

where the disturbance is given by (Chapter 4)

(11.46)

and  represents the area of distributed fully adjusted parts due to the inter-
nal microstructural self-adjustment leading to microcracking and degrada-
tion (of asperities). That is, the observed stresses are expressed in terms of the
weighted value of the distributed FA parts in the interface zone (Fig. 11.3).
Thus, the effect of the area modified by the deformations in the asperities is
included in the description of the stresses. This approach is considered simi-
lar to that in Eq. (11.3b) (11).

The incremental Eq. (11.25) includes the effect of the deformation charac-
teristics of the FA (or microcracked) zones because of the existence of the sec-
ond term and the first part of the third term. Note that in the continuum
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damage model, Eq. (11.30), the interaction due to the response of the dam-
aged part is not included. Thus, the DSC model allows for the interaction
between the mechanisms in the RA and FA parts. Furthermore, the third term
in Eq. (11.25), which represents the relative stress  , provides for interac-
tive (relative) motions between the RI and FA parts.

In the description of D in Eq. (11.23), the parameters Du, A, and Z can be
expressed as functions of the size of the (test) specimen or roughness or mean
particle size of material at the interface (52–54). Also, Du is given by

(11.47)

where  is the critical or unique volume (dilation) to which a given interface
zone would tend. It can be a function of (initial) normal stress or roughness (par-
ticle size). In other words, Du can be considered to act as the characteristic dimen-
sion. Thus, the model can allow for the characteristic dimension through Du.

11.7.2 Regularization and Penalty

The thin-layer element (Fig. 11.3) is assigned the thickness t, which can be
evaluated based on analytical and�or experimental considerations (36, 56, 60).
The effect of (deformation of) neighboring bodies can also be included in the
formulation (56). The inclusion of thickness can be interpreted as a mathe-
matical scheme to provide a penalty leading to the regularization of the uni-
lateral contact (56, 61, 62). Consider the normal stress (�n) given by

(11.48)

where vr is the normal relative displacement assuming no penetration of
body 1 into body 2 (Fig. 11.3), and 	n is the normal strain. If , body 2
tends to “rigid” behavior. It has been shown that the thickness t acts as a pen-
alty parameter and regularizes the system (62).

11.8 Testing

Laboratory or field testing are essential for the determination of parameters
and calibration of constitutive models. In the context of interfaces and joints,
a number of laboratory test devices have been used to measure shear and
normal responses. They include direct shear, torsion and ring shear, and
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simple shear devices; comprehensive reviews of these testing devices are
given elsewhere (5, 42, 49).

The testing here is identified as static, quasistatic or one-way, and cyclic or
two-way. The static test involves monotonic loading with increasing (shear)
stress. The quasistatic or one-way loading involves loading–unloading and
reloading cycles; however, the stress does not change sign. The cyclic or two-
way case involves cycles of loading–unloading and reloading that include
change in the sign of the stress.

A brief description of the cyclic multi degree-of-freedom (CYMDOF) shear
device (49, 63) with pore pressure measurements is given. Figure 11.15(a), (b),
and (c) show an overall view, cross section, and rings for a simple shear defor-
mation mode, respectively. The CYMDOF device allows testing under static,
quasistatic, and cyclic load and displacement-controlled loading, dry and
saturated interfaces, direct and simple shear modes of deformation, and mea-
surements of shear, normal and pore water pressure responses. It allows for
three degrees of freedom, normal, translational, and rotational. Maximum
load is about 130 KN (30 Kips) and displacement amplitudes of about 2.00 cm
(0.80 in) and �1.30 cm (�0.50 in.) in the vertical and horizontal directions,
respectively. It can permit simulation of a wide range of interfaces (soil-struc-
ture, rock joints, metal– metal, soil–geosynthetics, etc.).

11.9 Examples

The DSC and its hierarchical (elastic, nonlinear elastic, d0-plasticity, etc.) ver-
sions have been used to characterize a wide range of dry and fluid saturated
interfaces and joints under static, quasistatic, and cyclic loading. Table 11.1
shows details of these applications.

TABLE 11.1

Review of Interface/Joint Models

Model and Details References

Nonlinear elastic models for shear and normal response under 
quasistatic or one-way loading for dry interfaces

3, 5, 28, 30, 36, 37, 38, 39, 41

Elastoplastic (�0��1) models under quasistatic loading for dry 
interfaces and joints

42, 43, 44, 45, 46, 74, 75

DSC and elastoplastic models under quasistatic and cyclic 
loading for dry interfaces

43, 44, 46, 51, 69, 70

DSC and elastoplastic models under quasistatic and cycling 
loading for saturated interfaces

49, 50

Viscoplastic model under quasistatic loading for dry and wet 
interfaces

47, 48

DSC model for thermomechanical behavior of joints (Pb�Sn
solders) under cyclic loading

77–79
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It is found that for more realistic simulation of interface behavior, in gen-
eral, it is necessary to include factors such as irreversible deformations,
microcracking, and degradation at interfaces in addition to the elastic
response. Hence, in the upcoming examples, major attention is given to the

FIGURE 11.15
Details of CYMDOF-P device: (a) overall view; (b) cross section of specimen; and (c) rings
for simple shear mode (49, 63, 73).
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DSC and its specialized versions such as �0-associative plasticity models in
the HISS approach.

Example 11.1 Concrete–Concrete Interface
Figure 11.16(a) shows a schematic of interface or joint between concrete with
different teeth angles � (� 5, 7, 9 degrees) that were tested using the CYM-
DOF device under different normal stresses (42, 55). The parameters for the
DSC model for � � 5� and 9� (Table 11.2) were obtained as average values
from tests with � � 5� and 9� (44, 64). Figure 11.16(b) and (c) show compari-
sons between back predictions and observed test results for � � 7�. This is an
independent validation, as it was not used for finding the average constants
(Table 11.2).

Example 11.2 Rock Joints
Schneider (57, 58) reported a series of shear tests on rock joints, Type C, A,
and B, indicating smooth to rough conditions. Type C was joint in a limestone
and is considered to be smooth; Type A was joint in a granite and is consid-
ered to be medium-rough; and Type B was a joint in sandstone, which was
rougher. Table 11.3 shows material parameters for the three joint types.

Figure 11.17 shows comparisons between the � 
 ur and vr vs. ur relations
for the three joint types from smooth (C) to intermediate (A) to rough (B)
joints. The vr vs. ur plots are shown only for typical values of �n � 0.61, 1.38,
and 1.29 MPa, respectively.

Bandis et al. (65) reported shear tests for simulated rock joints with different
normal stresses and roughness defined by JRC (joint roughness coefficient).

TABLE 11.2

Constants for Back Predictions. Concrete–Concrete Interface 
(a) � � 5�; and (b) � � 9� (64)

� � 5� � � 9�

Elastic constants kn 6.2 MPa �mm 6.2 MPa �mm
ks 31.0 MPa �mm 31.0 MPa �mm

Yield function F a 0.0035 0.0085
b 0.9 0.9
n 2.1 2.1
� 0.0936 0.303
q 1.79 1.98

Critical state c1 0.48 0.81
c2 0.895 0.99

0.81 0.81
0.0 0.0

Disturbed state A� 1.15 3.29
Eq. (11.23) Z� 0.37 0.65

An 0.85 0.85
Zn 1.85 1.85
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Details of the DSC modelling and validation for these test data are given else-
where (44, 64).

Example 11.3 Rock–Pile Interface
Williams (66) reported laboratory direct shear tests on interface between pile
and a weak rock. In contrast to the foregoing tests where the normal stress
was kept constant, the normal stiffness (kn) was kept constant. The normal
stiffness was directly proportional to the normal displacement (dilation). The
tests were performed under different (constant) normal stiffnesses and initial
normal stress, . The material parameters for the DSC model were determined
using a number of tests. Their average values (Table 11.4) were used to per-
form independent back prediction as described ahead.

Figure 11.18 shows comparisons between back predictions and observa-
tions in terms of � vs. ur , vr  vs. ur , �n vs. ur , and � vs. �n for  � 15.0 kPa and

FIGURE 11.16
Comparisons of predictions and observations for concrete–concrete interface, teeth angle �
7�; (a) � vs. ur , (b) vr vs. ur (44, 64). ©John Wiley & Sons Ltd. Reproduced with permission.
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kn � 36.0 kPa/mm. This test was not used for finding the parameters (Table 11.4);
hence, it is an independent validation.

The constant normal stiffness test is relatively complex and exhibits differ-
ent behavior compared to the constant normal stress tests. Here, the normal
stress increases [Fig. 11.18(d)], and the mobilized friction angle �m (tan �m �
���n) decreases and tends to the residual value. This is because, as the shear
stress increases, the normal stress increases faster, and the ratio ���n decreases
with shearing. This phenomenon, before the peak stress, is termed as weaken-
ing in contrast to softening. In the case of the latter, the shear stress after the

TABLE 11.3

Constants for Back Predictions. Rock Joints: (a) Type C — Smooth, 
(b) Type A — Medium Rough, and Type B — Rough (64)

Type C Type A Type B

Elastic constants kn 4.2 MPa �mm 5.6 MPa �mm 5.0 MPa �mm
ks 21.0 MPa �mm 28.0 MPa �mm 25.0 MPa �mm

Yield function F a 0.0082 0.0656 0.124
b 1.05 1.42 1.21
n 2.10 2.31 2.23
� 1.91 3.24 3.68
q 1.98 1.91 1.97

Critical state c1 0.82 0.90 0.89
c2 0.99 0.955 0.985

3.80 4.94 7.52
0.873 1.21 1.069

Disturbed state A� 2.97 3.87 6.27
Z� 0.30 0.36 0.90
An 4.18 3.88 7.99
Zn 1.64 0.90 1.52

TABLE 11.4

Constants for Back Predictions. 
Rock-Pile Interface: Test SM4 (64)

Elastic constants kn 1.0 MPa/mm
ks 5.0 MPa/mm

Yield function F a 0.1
b 4.5
n 3.0
� 42.5
q 1.78

Critical state c1 1.27
c2 0.89

2.11
0.0

Disturbed state A� 5.16
Z� 0.96
An 5.23
Zn 1.19

vr
o




vr
0
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peak drops. In contrast, in the constant normal stress tests, �m increases up to
the peak and then decreases.

Example 11.4 Dry Sand–Concrete Interfaces: 
Static and Cyclic Behavior
A series of laboratory tests using a simple shear device have been reported by
Uesugi et al. (67, 68) for sand (Toyoura)–concrete and sand–steel interfaces.

FIGURE 11.17
Comparisons of predictions and observations for rock joints: (a) � vs. ur, type C joint; (b) vr

vs. ur, type C joint; (c) � vs. ur, type A joint; (d) vr vs. ur, type A joint; (e) � vs. ur, type B joint;
(f) vr vs. ur, type B joint (44, 64).
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The tests were performed under different surface roughness (R), initial normal
stress (�n), and relative density (Dr). Details of the DSC model and associated
plasticity (RI) model are given in (43). Here the effect of roughness of the inter-
face was included in the ultimate parameters and disturbance parameters for
the static and cyclic tests. The roughness was defined as (43, 67, 68)

(11.49a)

FIGURE 11.17
(continued)

R
Rn

Rn
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-------- if Rn
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where Rn is the normalized roughness:

(11.49b)

Rmax is the relative height between the highest peak and lowest trough along
a surface (asperity) profile over the length L, which can be adopted depend-
ing on roughness, e.g., L � D50 or 0.2 mm, D50 is the mean diameter of sand
particles, and  is the critical normalized roughness beyond which the
shear failure would occur in soil rather than at the interface.

The effect of roughness (R) on the hardening and disturbance behavior was
incorporated by expressing various quantities in terms of R. The hardening
function, �, in Eq. (11.11) was expressed as

(11.50a)

(11.50b)

FIGURE 11.18
Comparisons of predictions and observations for rock–pile interface, independent test:  �
15 kPa, kn � 36.0 kPa�mm; (a) � vs. ur; (b) vr vs. ur; (c) �n vs. ur; (d) � vs. �n (44, 64).
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where   is the value of �D at the peak shear stress, �p, and a1 and b1 are hard-
ening parameters. For the nonassociative �1 model, the hardening function,
�Q (Eq. 11.57b below), was expressed as

(11.51a)

where  is the value of � at the phase change point, � is the nonassociative
parameter, and

(11.51b)

(11.51c)

The ratios �p ��n, �r ��n, and  were expressed as functions of R:

(11.52a)

FIGURE 11.18
(continued)
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(11.52b)

(11.52c)

where �p1, �p2, �01, �02, , and  are material parameters, �r is the residual
shear stress, and  denotes the roundness of sand particles. Equations
(11.52a and b) are used in Eq. (11.50), and Eq. (11.52c) introduces the effect of
R on the disturbance through  Du in Eq. (11.51c).

The DSC parameters were found from tests reported in (67, 68); their values
are given in (43).

Figure 11.19 shows comparisons between back predictions and static test
data for different roughness for �n � 98 kPa and Dr � 90%, for concrete–Toy-
oura sand interface.

Figure 11.20 shows comparisons for cyclic tests for �n � 98 kPa, Dr � 90%,
and Rmax � 23 �m, in terms of ���n vs. ur and vr vs. ur , with number cycles
(N � 1, 2, , 15).

Example 11.5 Dry Sand-Steel Interfaces: Static 
Two- and Three-Dimensional Behavior
Fakharian and Evgin (69) used the DSC with HISS �1-plasticity model for the RI
behavior and constrained-liquid simulation for the FA response, i.e., the

FIGURE 11.19
Comparisons for dry sand (Toyoura)–concrete interface, static loading: �n � 98 kPa, Dr �

90% (43).
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material parts in the FA state cannot carry shear stress. They calibrated the
model on the basis of laboratory tests for interfaces between a medium silica
sand with relative density, Dr � 88%, and steel (plate) by using the test device
described in (70). The sand-blasting technique was used to obtain different
surface roughnesses, Rmax (Eq. 11.49b) � 4, 15, and 25 �m, which cover the
range from smooth to rough conditions.

The DSC model used was the same as in Example 11.4. The material
parameters were found from a series of two-dimensional laboratory tests
depicted in Fig. 11.21; details of parameters and the test device are given in
(69, 70).

Figure 11.22 shows comparisons between back predictions and test data
for the two-dimensional test in which the shear displacement was applied
with constant normal stress �n � 100 kPa and sand density Dr � 88%. The
comparisons involve Rmax � 3.6 and 25 �m, while the results for Rmax � 15 �m

FIGURE 11.20
Comparisons for sand (Toyoura)–steel interface, cyclic loading: �n � 98 kPa, Dr � 90%, Rmax �

23 �m (43).

FIGURE 11.21
Stresses acting on an interface: (a) 3-D, (b) 2-D (69). ©John Wiley & Sons Ltd. Reproduced
with permission.
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involved only predictions. It can be seen that the model provides satisfac-
tory predictions of hardening, dilative, peak, and softening responses. For
the case of the smooth interface (Rmax � 3.6 �m), the predictions show
essentially zero normal displacement, while the test data show nonzero
compression.

For the three-dimensional case, the yield function [Eq. (11.11)] was modi-
fied as (69)

(11.53)

In the three-dimensional tests, the shear stress �y � 0, 20, 40, and 60 kPa
was applied with �n � 100 kPa (Fig. 11.21). Then the interface was sheared in
the x-direction by increasing �x with constant values of �y and �n. The stress
and displacement paths followed in the tests are shown in Fig. 11.23.

Figure 11.24 shows comparisons between the predictions and test data for
shear stress, �x, versus shear displacement, ux, and normal displacement, v,
versus ux for the three-dimensional tests. Figure 11.23 shows comparisons
between the predicted and observed stress paths. The parameters from the two-
dimensional tests were used for the three-dimensional analysis; hence, this is
considered to be an independent prediction. Overall, the predictions compare
well with the observed behavior, particularly because this is an independent
validation. Details of tests and validations for tests under constant stiffness con-
dition (Example 11.3) are also reported by Fakharian and Evgin (69).

FIGURE 11.22
Comparisons between predictions and test data for 2-D tests: �n � 100 kPa, Dr � 88%. For
Rmax � 15, only predictions are shown (69). ©John Wiley & Sons Ltd. Reproduced with
permission.
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Example 11.6 Soil–Rock Interface: Viscoplastic Model
A smeared interface zone occurs between the moving mass of soil and bed
rock in the case of creeping slopes and landslides (47, 48); Fig. 11.25(a) shows
a schematic of such an interface. The mechanical behavior of the interface
zone can involve creep or viscous deformations in addition to elastic and
plastic deformations.

A viscoplastic model for the interface zone has been developed, verified,
and used (47, 48) to characterize the interface zone at the site of the Villar-
beney landslide in Switzerland (71). Brief details of the model are given
ahead.

The incremental elastoplastic equations for the HISS (�0 ��1) models can be
written as

(11.54a)

where  d � [d� d�n], d � [dur dvr], and  is the elastoplastic matrix
derived using the yield  function,  F [Eq. (11.11)], in the context of consistency
condition, dF � 0,  and the normality rule

FIGURE 11.23
Comparisons between predictions and test data for stress and displacement paths for 3-D
tests: �n � 100 kPa (69). ©John Wiley & Sons Ltd. Reproduced with permission.
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FIGURE 11.24
Comparisons between predictions and test data for different values of �y in 3-D tests: �n �

100 kPa, Rmax � 25 �m, Dr � 88% (69). ©John Wiley & Sons Ltd. Reproduced with permission.

FIGURE 11.25
(a) Schematic of interface in creeping slope; (b) cross section of interface test specimen
(47, 48). ©John Wiley & Sons Ltd. Reproduced with permission.
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(11.54b)

where , 
 is the scalar proportionality factor, and Q is
the plastic potential function. In the case of associative plasticity, Q F
(Chapter 7).

Perzyna’s (72) theory of viscoplasticity is used to characterize the predom-
inant plastic deformations, i.e., the viscoelastic component is assumed to be
small. Accordingly, the viscoplastic strain rate is given by (see Chapter 8)

(11.55a)

or

(11.55b)

where Q is the scalar flow (plastic potential) function, � is the fluidity param-
eter, F0 is the normalizing constant (e.g., yield stress, atmospheric pressure),
and the angle bracket has the following meaning:

(11.56)

Nonassociative Response. For nonassociative behavior, the plastic poten-
tial function, Q, is written as

(11.57a)

and the hardening function, �Q, is given by

(11.57b)

where �0 is the value of � at the initiation of the nonassociative response, rv is
the ratio of the plastic normal displacement trajectory (�v) to the total trajec-
tory, � [Eq. (11.13)], and � is the nonassociative parameter (Chapter 7). For the
case of smooth interfaces, dilation is not significant, and the following
expression can be used for �Q:

(11.58)
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where �ph � (2�n)�  and �0 � �  are the values of � (in Eq. 11.11) at
the transition point (Fig. 11.6) and at the start of the shear loading (i.e., at the
end of the normal loading), respectively, and � is the nonassociative parame-
ter. The hardening function � in Eq. (11.11) used here is given by

(11.59)

where  and  are the trajectories of volumetric and deviatoric viscoplastic
strains (displacements), respectively, and a and b are hardening parameters.

11.9.1 Creep Behavior

The parameters � and � define the viscous or creep response. The latter is
given by

(11.60)

where N is the material parameter.

11.9.2 Testing

A series of laboratory tests were performed by using the CYMDOF, triaxial,
and direct shear devices (47, 48, 71). They include both quasistatic or one-way
(loading–unloading–reloading) and creep tests. The drained tests using the
CYMDOF device involved interface simulation [Fig. 11.25(b)] and were con-
ducted under different normal stresses, �n � 103, 207, and 345 kPa, with dif-
ferent amplitudes of shear displacements,  � 0.19, 0.64, and 1.27 cm. The
parameters for the viscoplastic model are shown in Table 11.5.

Figures 11.26 and 11.27 show comparisons between back predictions and
observations for a typical static test and for the creep tests, respectively.

Example 11.7 Saturated Clay–Steel Interfaces: 
Cyclic Behavior
The CYMDOF-P device (Fig. 11.15) was used to perform a number of
cyclic undrained (two-way) tests for saturated marine clay–steel inter-
faces, under different normal stresses and amplitudes of displacements
(49, 73). The DSC constitutive model was formulated based on the elasto-
plastic (�0) model to characterize the RI response, the critical state for the
FA response, and the disturbance was found based on cyclic degradation
data [Fig. 11.28(a)].
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TABLE 11.5

Parameters for Interface Model in Creeping Slope (47, 48)

Parameters Symbol Value

Elastic

Normal stiffness kn 8 � kPa�cm
Shear stiffness ks 2800 kPa/cm

Plastic

Ultimate � 0.24
Transition n 2.04
Hardening a 143.0
Hardening b 10.0
Nonassociative � 0.57

Viscous

Fluidity � 0.057/min
Exponent N 3.15

FIGURE 11.26
Comparisons between predictions and observations for interface test at �n � 103 kPa (47, 48).

FIGURE 11.27
Comparisons between prediction and observation for creep tests, stress ratio � 0.6: (a)
preconsolidation stress � 200 kPa; (b) preconsolidation stress � 400 kPa (47, 48).

106
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The alternative form of disturbance function [Eq. (3.15b), Chapter 3], was
used as

(11.58)

where Du � 1 and h, w, and s are parameters found from the laboratory tests.
The incremental constitutive relations for the monotonic loading and

reverse loading were based on the alternative formulation in Eq. (11.33),
while the unloading response was assumed to be bilinearly elastic, i.e., the
unloading modulus was bilinear, as indicated in Fig. 11.28.

The material parameters were found from test data with different values of
�n (� 69 and 138 kPa) and displacement amplitudes,  (� 0.5 and 1.5 mm).

FIGURE 11.28
(a) Observed cyclic � 
 ur curves and (b) predicted curves for different cycles: �n � 138 kPa,

� 1.5 mm (49, 73).ur
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Typical parameters for the test with �n � 138 kPa and  � 1.5 mm are shown
in Table 11.6.

Figures 11.28 and 11.29 show typical comparisons between predicted
results and observed data in terms of � vs. ur and pore water pressure vs. time
(cycles) for the test with �n � 138 kPa and  � 1.5 mm.

Sand–Steel Interfaces: Quasistatic and Cyclic Behavior. A series of
laboratory tests were performed for dry and (partially) saturated sand
(Ottawa)–steel interfaces by using the CYMDOF-P device (50). The tests
were performed under different normal stresses, �n (69, 138, 207 kPa),
amplitudes of displacements,  (3.5, 4.3, 1.27 mm) and rates of loading
(1.27, 2.54, 36.58 mm�min). Calibration of the DSC model and its validation
are given in (50).

Example 11.8 Sand–Geosynthetic Interfaces: 
Static Response
Laboratory static direct tests were performed (51) to measure the interface
response between a sand and geogrid (geosynthetic reinforcement) under
different normal stresses, �n (26.8, 53.6, 80.4, and 214.4 kPa).

The DSC model was formulated based on the test data with Eq. (11.32). The
RI behavior was assumed to be elastoplastic (�0-model), and the FA response
was simulated using the critical state. Table 11.7 shows the material parame-

TABLE 11.6

Parameters for Cyclic Test, Clay–Steel Interface, for  � 1.5 mm (73)

Parameters Average
�n � 69 

kPa
�n � 138 

kPa
�n � 207 

kPa

Intact State
Elastic E 4,400 2,400 4,300 6,500

� 0.42 0.41 0.42 0.42
Plastic n 2.1 2.1 2.1 2.1

3.622 2.822 2.88 5.222
a 2.63 2.701 2.586 2.601
b 0.067 0.024 0.087 0.09

Critical State 0.37 0.408 0.356 0.346

 0.298 0.298 0.298 0.298

1.359 1.359 1.359 1.359
e0 1.69 1.49 1.37

Disturbance Function
Shear h� 3.76 4.153 9.411 0.156
Eq. (11.58) w� 0.64 0.916 0.498 1.035

s� 2 2 2 2
Normal hn 8.941 17.62 10.62 0.791

Eq. (11.58) wn 0.745 0.825 0.766 0.703
sn 2 2 2 2
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a
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ters. Figure 11.30 shows typical comparisons between predictions and
observed data for the test with �n � 26.8 kPa.

Example 11.9 Aluminum Shaft–Sand Interfaces
El-Sakhawy and Edil (74, 75) reported a series of laboratory interface tests
between aluminum shaft and a sand (dry, medium-dense portage) using the
test device and instrumentation shown in Fig. 11.31. The measurements
involved shear and normal stresses and displacements at the interface
between soil and the shaft. In order to measure the interface normal stresses,
the aluminum shaft was instrumented with two 90� strain gauge rosettes
mounted inside the shaft at two locations, 152 mm (6.0 in.) apart. Two surface
roughnesses were considered: smooth with Rmax � 5.72 �m (0.225 � in.) and
rough with Rmax � 4.27 mm (0.168 in.) [Eq. (11.49)].

Tests were performed under two conditions using the cell pressure and
flexible donut-shaped pressure gauges (Fig. 11.31). In the constant normal

FIGURE 11.29
(a) Observed excess pore water pressure curves and (b) predicted curves for different cycles:
�n � 138 kPa,  � 1.5 mm (49, 73).ur

a
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stress tests, independent cell fluid and flexible-top boundary bag pressures
provided constant horizontal (radial) and vertical normal stresses. In the con-
stant volume test, the cell fluid and the fluid in the flexible-top boundary bag
were sealed after the application of the initial horizontal and vertical normal
stresses (75).

The interface model based on HISS �1-plasticity model (42, 47) [Eq. (11.57)]
was used to characterize the behavior of interfaces. The parameters obtained
from the test data are shown in Table 11.8 (74); they were found from tests
under three normal stresses: �n � 34.5, 69.0, and 103.5 kPa.

TABLE 11.7

Material Constants for Geosythetic Interface (51)

Elastic parameters kn 550 kPa/mm
ks 88.83 kPa/mm

Intact state � 95.7
n 1.4
q 1.395
a1 96.9324
�1 0.01965

Critical state c1 0.456

0.2635

0.0444
Disturbance A� 0.0896

Z� 2.2935
An 1.1158
Zn 1.17
Du 0.90

Note: The parameters are obtained from nondimension-
alized quantities, with respect to pa.

©John Wiley & Sons Ltd. Reproduced with permission.

FIGURE 11.30
(a) Observed and predicted � vs. ur and (b) vr vs. ur curves, one-way loading for sand–geo-
synthetic interface: �n � 26.8 kPa (51). ©John Wiley & Sons Ltd. Reproduced with permission.
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Figure 11.32(a and b) show comparisons between the laboratory shear
tests and nonassociative model predictions for the smooth and rough
interfaces, respectively, under constant stress tests. It can be seen that the
correlations are very good. It was reported (75) that the predictions for
normal displacements showed consistent trends but did not provide as
good correlations.

Example 11.10 Solder Joint in Electronic Chip-Substrate 
Systems: Thermomechanical Behavior
In electronic packaging and semiconductor systems (76) (Fig. 11.33), the joining
materials, e.g., solders (Pb�Sn) whose thickness is small, of the order 200 �m,
can be treated as bulk interface zones with thickness t. Development and

TABLE 11.8

Parameters for Shaft–Sand Interfaces (75)

Parameter
Smooth
interface

Rough
interface

Elastic ks 460 kPa �mm 1600 kPa �mm
kn 5400 kPa �mm 5400 kPa �mm

Plastic (average) � 0.246 1.25
n 2.05 2.13
a 0.0096 0.088
b 0.517 0.415
� 1.124 —
� — 1.120

FIGURE 11.31
Instrumented shaft and sand (75).
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application of the DSC model with �0-plasticity model for the RI response for
solders are given in Chapter 7. Development, validations, and computer
predictions for various chip-substrate systems are given in (77–79) and in
Chapter 13. 

Example 11.11 Homework Problems
Derive the matrix   in Eq. (11.25) by assuming that the RI behavior is sim-
ulated as linear elastic with ks and kn, and as elastoplastic with F in Eq. (11.11).
Then by assuming that the strains (displacements) in the RI and FA parts are
equal, derive the special form of Eq. (11.25). Further, assume that the FA
behavior is simulated such that it cannot carry any stress at all, i.e.,  in
Eq. (11.22a) is zero. Then by using the parameters in Table 11.2, backpredict
the responses for � � 0.138 MPa (Fig. 11.16).

Hint: You may prepare a computer routine for the integration of the special-
ized form of Eq. (11.25). The predictions you obtain may not be the same as

FIGURE 11.32
Comparison between model predictions and test behavior for constant stress tests (75).

FIGURE 11.33
Leadless ceramic chip carrier (LCCC) (76).
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in Fig. 11.16 because the FA response is characterized using the critical-state
equations. This problem is designed mainly to illustrate the procedure
involved in back predictions.

11.10 Computer Implementation

Details of the implementation of the DSC models are given in Chapter 13. The
thin-layer interface�joint element is formulated in the same manner as the
solid (two- or three-dimensional) element. The stiffness matrix for the inter-
face element usually has the same number of degrees of freedom as the solid
element; hence, it is assembled directly with the solid elements.
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12
Microstructure: Localization and Instability
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and Disturbance

In this chapter, we consider the

(a) characteristics of deforming materials resulting from microstruc-
tural self-adjustment caused by microcracking and�or relative par-
ticle motions,

(b) nonlocality due to development of discontinuous and nonhomo-
geneous deformations resulting in localization, and the need of
including nonlocal effects in constitutive models,
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(c) review of various nonlocal models,
(d) spurious or pathological mesh dependence,
(e) instability at local and global levels leading to threshold transitions

in the microstructure such as contraction to dilation, peak and
critical conditions like liquefaction and fatigue failure,

(f) discussion of the capabilities of the DSC to allow for localization
and characteristic dimension and instability, including comparison
of the DSC with other models, and 

(g) examples to illustrate the capabilities of the DSC.

12.1 Microstructure

A material can be considered to be a matrix or structure made of (clusters of)
particles connected through friction, and�or bonding at the contacts, Fig. 12.1.
The matrix framework is composed of solid particles and pore spaces. For
dry materials, the pore spaces are empty, and usually contain air. For wet
materials, the pores are partially or fully saturated with a liquid; e.g., water.
In the case of partial saturation, the part of the pore space not occupied by the
liquid, is filled with air (or gas), Chapter 9.

Under load, the material’s matrix deforms due to particle motions that can
involve deformations without sliding, particle sliding, rotation and movement
towards or away from each other, Chapter 2. As a result, the particles may
experience instantaneous and locally unstable motions at the microlevel. Such
motions can occur in the material element at random locations, Fig. 12.2(a). The
macrolevel or global response of the finite-sized test specimen, however, shows
average or observed response that is “smooth”, without oscillations. As the
deformations grow, the (clusters of) particles experiencing the local instability

FIGURE 12.1
Material matrix and particle contacts.
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FIGURE 12.2
Deformation of microstructure or matrix of material.
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may reach critical magnitudes, and global or macrolevel instability, failure or
collapse may initiate near the end (softening) region. Subsequently, complete
failure can occur with the collapse of the entire specimen.

Figure 12.2(b) shows an analogy of motions of material particles over a
series of undulating slopes involving (horizontal) plateaus. A particle or clus-
ter of particles can experience instantaneous “fall” or instability when it is at
the end of a plateau. However, overall stable motion can occur on the plateau.
The macrolevel response of a material element composed of a large number
(millions) of such particle (clusters) may, however, maintain global stability
until the time the extents of the particles (clusters) experiencing local instabil-
ity reach a critical threshold value. Then global or macro instability can occur.

Figure 12.3 shows schematics of stress-strain and volume change behavior
for materials under compressive and tensile loading. Some materials, e.g.,
metals, may exhibit nonlinear behavior marked (a) and very little or no vol-
ume change, under both compression and tension.

Other materials like geologic (granular) may exhibit different behavior
under initially loose (a) and dense conditions (b). In the case of the former, the
volume change behavior is compactive and approaches the critical state (d�v � 0)
asymptotically. On the other hand, the dense material may first compact, then
dilate, and then approach the state when d�v � 0. Under tension, a material

FIGURE 12.3
Schematic of stress–strain and volumetric responses for loose (a) and dense (b) materials in
compression, and material in tension.
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(like concrete) may exhibit softening (b) response, where the volume change is
essentially dilative (increase), marked (c).

Threshold transitions occur at states when the extents of the accumulation of
local motions reach certain values. Examples of threshold transitions are the
peak stress, transition from contractive to dilative state when d�v � 0 (point d),
the later asymptotic state when d�v � 0, the peak or earlier stress states at which
microcracking initiates (Dcm), and the state at which the material experiences ini-
tiation of instability (Dc), and enters the region leading to failure (Df), Fig. 12.3.

From the viewpoints of global instability at the specimen level, the peak
stress, and the states, Dc and Df, are usually relevant. Localization may initiate
at the peak stress, and the tangent modulus or tangent constitutive matrix,  ,
vanishes; i.e.,  , Fig. 12.4. In the case of softening, the stiffness assumes a
negative definite value from peak to Dc and then approaches zero in the ultimate

FIGURE 12.4
Threshold transition states and instability.
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or residual zone. In the case of healing or stiffening, the material exhibits stiffer
response after the threshold state,  ,  after which   � 0.

One of the reasons for material instability can be due to the frictional effects,
which result in the constitutive matrix, , to be nonsymmetric. This can occur
in the case of both compressive and tensile loading. The lack of symmetry can
be sufficient to lead to the loss of material stability at certain states during
deformation. Thus, material instabilities can occur due to both decohesion
(particle separation) in the case of tensile loading and the frictional behavior.
The former can also occur in materials such as concrete and rocks under low
confining pressures. The friction case can involve slip processes in metals,
soils and concrete under higher confining pressures (1–15).

12.2 Wellposedness

An initially continuous material may experience discontinuous deformations
due to microcracking and relative particle motions. Characterization of such
materials requires considerations beyond those for continuous materials
defined by using the theories of continuum mechanics.

As the discontinuities grow, the continuum material gradually transforms
into a discontinuum material; in the limit, the entire material can approach the
discontinuum state. As discussed in Chapters 2 and 3, the limiting or asymp-
totic state, which represents “total” failure, is usually not measurable in engi-
neering practice; the engineering failure occurs before the limiting state is
reached. Such a state is treated, approximately, as the FA state in the DSC.

The initiation of discontinuities involving localization (strain, damage or
disturbance) represents loss of wellposedness of the initial or boundary value
problem. Such a critical state entails a change in the type of the differential
problem. For instance, it may result in the loss of ellipticity of the equilibrium
differential equations. Maintenance of ellipticity is considered to be a condi-
tion for wellposedness of the boundary value problem (10–12).

12.3 Localization

In some materials, discontinuous deformations often localize in narrow
zones, while the material in the neighboring regions may load or unload and
remain in its intact or continuum state (10–13, 16–23). Factors such as material
type and composition, boundary conditions and kind of applied loads influ-
ence the localization phenomenon. A material can fail due to the formation
and growth of microcracking (disturbance) at randomly distributed loca-
tions. This type of localization is often called Mode-I localization (24–26) and
is usually observed in rocks, alloys, and composite media.

�
˜

t( ) C
˜

C
˜
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Localization may result in motions along preferred directions, called shear
bands, and can lead to excessive deformations and failure. This type of local-
ization is called Mode-II localization, and is often observed in metals, geoma-
terials and concrete (in compression) (24–26).

Localization usually initiates at the peak load (stress), Fig. 12.5; however,
microcracking leading to localization may initiate before peak (Dcm).

Beyond the peak, a material may experience softening or degradation in its
load-carrying capacity, but still continue to carry reduced load compared to
the peak load while growth and coalescence of microcracks continue during
the falling region of the curve, Fig. 12.5. Finally, the microcrack growth can
lead to a macrocrack or fracture at point C, where critical disturbance, Dc,
occurs. Further deformations lead to engineering “failure” at Df . In Fig. 12.5,
Du is the ultimate disturbance.

If the disturbance (or damage) causing strain-softening is characterized by
using the continuum approach, it becomes necessary to include in the constitu-
tive model a characteristic dimension that identifies and provides limit to the
zone of localization. In other words, the zone of disturbance is not allowed to
localize to zero volume (11, 12, 27). At the macrolevel, therefore, tensile or shear
strains evolve and grow within a zone of finite thickness or width, which is
related to characteristic dimension. It was reported that the width for concrete
was about 2.7 times the maximum aggregate size. For geological media, the
shear band width is about 10 to 30 times the average grain diameter (26–28).

12.3.1 Nonlocality and Characteristic Dimension

Nonlocality can be explained, in a simple and philosophical way, as the require-
ment that the behavior at a point in a material should include the effect of the
(discontinuous) responses in the neighboring zones. This requirement is rooted
in the interlinkedness that pervades physical systems, of which a material is a
subset. Thus, effects such as microcracking and particle motions leading to dis-
turbance (damage or strengthening) should include coupled influences from

FIGURE 12.5
Microcracking and localization.
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tributary zones, Fig. 12.6, in the regions adjacent to the point (P). In the case of
computer (FE) analysis, the effect of disturbance in the adjoining element should
be included in the response of a given finite element. In other words, the nonlocal
effects should be included in the stiffness matrix assembly beyond that given by
the approximation (10–15, 29, 30) functions for the unknown (displacement).

Characteristic Dimension. The issue of characteristic dimension is an inte-
gral part in the nonlocal considerations. It defines the connection between the
behavior of neighboring zones in the vicinity of a point, and the extent or length
of the influence. It acts as a localization limiter. The characteristic dimension is
dependent on such factors as the particle shape and size, material fabric and
size of heterogeneities. A constitutive model that can account for the nonlocal
effects should include the characteristic dimension in its framework.

Nonlocality is often allowed for by defining average or weighted values of
quantities (stress, strain, disturbance) at a point by including the tributary
regions. Here, it is considered that the impending motions at points of contact
between particles in solid deformable bodies, or at an interface or joint between
(two) deformable bodies, will occur when the stress at a point reaches a value
proportional to the weighted value of mean pressure in a solid or normal stress
at an interface. An example of such nonlocal formulations for friction laws is pre-
sented in (31).

12.4 Regularization and Nonlocal Models

When classical continuum and damage models are used to define response
of materials experiencing discontinuous deformations and localization, dis-
turbance (damage) leading to degradation or softening can occur without

FIGURE 12.6
Influence of tributary zone around a point.
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energy dissipation as the (FE) mesh is refined (10–13, 29, 30, 32). In other
words, continuum models that admit only a pointwise or local description of
quantities (strains, stresses, damage, disturbance) are not capable to handle
discontinuous deformations. A consequence of their use in numerical (FE) cal-
culations is that the computer solutions are severely mesh dependent, as fail-
ure is predicted without energy dissipation (10–12). Such mesh dependence,
which is beyond the traditional effect of mesh refinement (33, 34), is called
pathological or spurious mesh dependence.

To overcome the foregoing difficulties, it becomes necessary to regularize
the problem such that the strain field is “regular“ during softening. Various
schemes such as homogenization, weighted averaging of quantities, and intro-
duction of enrichments and constraints are used for the regularization. We first
present a review of these schemes, and then describe how the DSC allows for
nonlocality, characteristic dimension and regularization.

12.4.1 Microcrack Interaction Models

One of the ways to introduce nonlocality in constitutive models is to allow
for the interaction or coupling between the undamaged (RI) and micro-
cracked (FA) material parts in the deforming material element. A number of
studies have considered superposition of the microcrack kinematics on the
continuum model. One such model is proposed by Bazant (13), in which the
weighted average stresses are incorporated in the continuum damage model.
The incremental stress,   is expressed as

(12.1)

where  is the elasticity matrix for the undamaged material,  is the incre-
mental strain vector, and  is the nonlocal plastic or inelastic incremental
stress vector, given by

(12.2)

Here, V is the volume of the body,  are the coordinate vectors, (�, �) is the
nonlocal weight function, and   is the incremental plastic stress vector.
Details of the derivation of the model are given by Bazant (13). Here we make
the following observations:

Figure 12.7 shows the schematic of the model for an incremental loading
step. Assuming that the cracks are “frozen” or “glued”, the stress increment
due to the strain increment, , is represented by the line segment  with the
stiffness, E, for the undamaged material.  Thus, this step can be considered to
represent the response of the material as if it is a continuum or in the RI state
(as in the DSC). In the second step, the cracks are unfrozen, which results in
transmission of stresses across the relaxed cracks.
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If there is no growth or closing of cracks, the unfreezing of cracks under
given stress or displacement increment would cause the stress to drop from
point 3 to point 4, Fig. 12.7, along the secant line  . Effect of such a change
in stress is calculated by applying equal but opposite stress corresponding to
the drop. When cracks propagate and new cracks nucleate, there occurs a
greater stress drop, which is given by the segment . The combined effect of
unfreezing, propagation and nucleation of cracks is to decrease the stress
from the continuum (undamaged) or RI stress at point 3 to that correspond-
ing to the observed or actual stress at point 2.

Thus, the effect of the microcrack response and its coupling with the behavior
of the undamaged part is superimposed on the response of the undamaged (or
RI) part. In the DSC, such effect of the microcracks on the FA part is incorpo-
rated implicitly in the model, Eq. (4.1), through the terms,  and dD
in which   denotes the stresses carried by the microcracked or FA part.

12.4.2 Rate-Dependent Models

Regularization can be provided by incorporating deformation-rate depen-
dence in the constitutive equations. The viscoplastic models, e.g., Perzyna
(Chapter 8), possess the regularization attribute as the energy dissipation
remains finite during plastic flow for dynamic loading (19). Here, the viscos-
ity (	) that defines rate dependence is related to the internal length scale
(35,36). The regularization property of the viscoplastic model has not been
proven for quasi-static loadings (32). However, with proper choice of the spa-
tial mesh and time-step size, the regularization effect can be achieved for qua-
sistatic loadings (36).

12.4.3 Continuum Damage Model

The development and use of continuum and nonlocal damage models have
been available in many publications including various text books (37–46).
Kachanov (38) defined the damage variable, 
, as the ratio of the area  of

FIGURE 12.7
Local and nonlocal inelastic stress increments during loading step (13).
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the damaged, fractured or “lost” part of the material element to its original
area, A, i.e.,

(12.3)

Then the actual, observed or nominal stress, , at a point, is given by

(12.4)

where  is the stress at a point in the undamaged (or relative intact) part.
Equation (12.4) implies that the actual stress at a point is affected by dam-

age (
) which represents the effect of the lost or fractured part of the material.
However, it ignores the deformation in the damaged part and its coupled
influence on the actual behavior; this is because, once a part is damaged, it is
treated like a “void” which can carry no stress at all.

In reality, however, the damage may be treated as a “void” only at or near
failure when “finite” cracks and separation occur. In general, however, micro-
cracked or damaged parts can deform, carry stresses, and interact with the
undamaged parts so as to lead to the actual response. Thus, it is not realistic to
ignore the effect of microcracks and damaged parts on the behavior of the
material element. The damage model, Eq. (12.4), which assumes that the defor-
mation in the damaged part has no effect on the coupled actual response, is
often called the local damage model. As the effect of deformation in the neigh-
boring zone of a point is not included in the local models, they suffer from the
spurious mesh dependence.

12.4.4 Models for Nonlocal Effects

Recognition of the influence of the discontinuous nature of deforming mate-
rials and nonlocal effects has led to the development of a number of nonlocal
models. They include enrichment of continuum models by using various
schemes such as imposition of microcrack interaction (12, 13, 45), and gradi-
ent (10,12,47–54) and Cosserat theories (10, 12, 55–59). Here, brief descrip-
tions are presented together with the analysis of DSC in accounting for the
nonlocal effects.

A symbolic representation of nonlocal models is shown in Fig. 12.8. The
crux of the approach is to allow for the coupling or interaction between the
interconnected zones or clusters of continuum and discontinuous or micro-
cracked zones in a deforming material element. This leads to inclusion of
nonlocality and connection through the characteristic dimension between
the continuum and microcracked (or fully adjusted) zones or clusters. It
may be noted that almost all the available models are still based on the con-
tinuum approach, which is modified by the enrichments and special
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schemes. Thus, behavior, B(P), at a point, P, in the mixture of continuum (or
RI) and discontinuum (or FA) is expressed through a combination of the
behavior of the continuum (or RI) parts, B(Pc), and that of the discontinuous
(or FA) parts, B(Pd)

(12.5)

where the symbol, , represents the coupled integration of the behavior of the
two parts.

12.5 Nonlocal Continuum

In the context of the theory of elasticity, the concept of nonlocal continuum was
introduced by Eringen (37), Kröner (60) and others, the basic idea being that the
stress at a point should depend not only upon the deformation (strain) at that
point, but also on the deformations in the neighboring tributary zones.

Various investigators have used the nonlocal concept in the context of con-
tinuum damage models; these include nonlocal damage models with micro-
crack interaction (12,13,45). The effect of deformation in the tributary zone is
often obtained by using weighted average quantities such as strain and stress.
For example, weighted strain  is given by

(12.6)

where V is the volume of the body or structure, Vr(x) is the representative vol-
ume at point x, �(x – s) is the weighting function, and �(s) is the (equivalent)

FIGURE 12.8
Symbolic representation of nonlocal models.
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strain at a point. The weighted average for energy release rate at a point x,
(x),  is expressed as

(12.7)

where E(s) is the energy release rate at a point s in the material.

12.5.1 Strain and Energy Based Models

Nonlocal damage models are then developed by using weighted strain  or
 in the definition of damage, 
 (45), e.g.,

(12.8a)

(12.8b)

Thus, the use of the weighted average quantities , ,  etc., in the constitutive
equation and in the finite element calculation allows for the effect of the state
or deformation in the neighboring region on the behavior at a point.

12.5.2 Gradient Enrichment of Continuum Models

In the gradient enriched models, the nonlocality is introduced by adding gra-
dient terms in the continuum model. For example, in the case of plasticity
models, the yield function, F, is enhanced by introducing the gradients of
plastic equivalent strain,  (10, 44, 50–52)

(12.9)

where  is the nonlocal equivalent plastic rate,  is the local plastic strain
rate, and a1 and a2 are parameters that depend on the weight function and
dimension of the problem. If isotropy is considered, the odd derivatives can-
cel and the yield function, F, is expressed as

(12.10)

where   dt, and t is time. Note that in the local and classical plasticity,
the gradient term,  is not included. The gradient terms can be considered
to introduce nonlocal effects in the zones (in the neighborhood of a point) in
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the microstructural deformations involving discontinuities. Discussion of the
effect of gradient terms are presented in (7, 16, 17, 47, 48, 61).

De Borst et al. (10) have presented the gradient enhanced plasticity model
with the Drucker-Prager yield criterion, which, with the gradient terms, Eq.
(12.10), is given by

(12.11)

where J2D is the second invariant of the deviatoric stress tensor, Sij, p � J1�3 is
the hydrostatic or mean pressure, J1 is the first invariant of the stress tensor,
�ij,  is the friction parameter, and  denotes the cohesion in the material.

By considering the plastic scalar multiplier,   in the normality rule as an
independent variable, in addition to displacements,   � [u v w]T, as
unknowns, the finite element equations are derived as (10)

(12.12a)

where

is the traditional stiffness matrix from the displacement formulation,

(12.12b)

(12.12c)

 is the nodal (rate) displacement vector,  nodal plastic multiplier (rate)
vector,   is the applied external load (rate) vector,   � [h1

… hn] is the vector
of interpolation functions for the plastic multiplier (�),   � [ h1, … hn],
and c is given by

(12.13a)

and

(12.13b)
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The matrix, , is nonsymmetric, which would require a nonsymmetric
equation solver and may entail computational difficulties. Often, various
schemes (10) are used to solve the equations approximately by considering
only the symmetric part, . One way is to move the nonsymmetric part as a
load vector on the right-hand side as a load vector (15, 62–65). Details of the
computational schemes in the DSC are given later and in Chapter 13.

12.5.3 Cosserat Continuum

In the classical strength of materials approach, say, for the two-dimensional
case, the state of stress is defined by two normal (�xx, �yy) and one shear (�xy �
�yx) stresses. In the Cosserat theory (10, 12, 55–59), additional static and kine-
matic variables are introduced, Fig. 12.9. Hence, the displacement, strain and
stress vector are augmented as follows:

(12.14a)

(12.14b)

(12.14c)

where mzx and mzy are the coupled stresses,  �zx � �
z��x, �zy � �
z��y are the
micro-curvatures, and 
z is the micro-rotation about the z-axis. The internal
length scale, �, is introduced so that the strains and stresses have the same
dimensions.

It may be noted that the length scale (or characteristic dimension) is intro-
duced directly in the basic (elastic) formulation and provides the regulariza-
tion for the nonlocal effect. On the other hand, the regularization effect in the

FIGURE 12.9
Material element in Cosserat model.

k
˜��

k
˜ qq

u
˜

T u v 
z[ ]T
�

�
˜

T
�xx �yy �zz �xy �yx �xz� �yz ��[ ]�

�
˜

T
�xx �yy �zz �xy �yz mxz�� myz��[ ]T

�



© 2001 By CRC Press LLC

previous gradient enrichment is introduced only in the plastic regime. In
other words, in the case of the Cosserat model, the yield function, F, is defined
as in classical plasticity in terms of  and  only.

Furthermore, the Cosserat theory introduces micro-rotation, 
z, as an addi-
tional unknown; hence, in the finite element formulation, there occur three
independent generalized displacements u, v and 
z. Details of the Cosserat
model and its implementation in computational (finite element) procedures
are given in a number of publications (12, 59).

12.6 Stability

The cause of localization involving discontinuous deformations is considered
to be material instabilities in its microstructure. Stability has been defined dif-
ferently by different investigators (1–6, 8–10, 13). However, the basic notion is
that if a material experiences undefined or infinite changes under finite (small)
loading (or disturbance), instability can be considered to have occurred. In this
sense, when the determinant of the constituitive matrix,   (or for the sys-
tem stiffness matrix,  large changes in motion under small changes in
load can occur, causing instability.

According to Hill (1), instability occurs when the following stability crite-
rion is violated:

(12.15)

where � and � denote strain and stress, respectively, and the overdot denotes
rate (or increment). When the slope of average or homogenized (uniaxial)
compression or tension curve becomes negative, strain softening occurs, Fig.
12.4. Average or homogenized refers to the fact that the response at the mac-
rolevel is obtained by using stress as the ratio of force to the original area, and
strain as the ratio of the change in displacement to the original dimension of
the specimen. It does not take into account what happens at the microlevel
affected by factors such as local instability, initial (micro) flaws, and resulting
nonhomogeneities in deformations. As indicated before, such an approach
may not provide consistent simulation of the response which involves non-
homogeneous or discontinuous states of deformations and does not allow for
what happens in the neighborhood of a material point. Then it becomes nec-
essary to superimpose external enrichments such as microcrack interaction
and gradient or Cosserat theories so as to ‘‘regularize’’ the problem. In the
DSC, such regularizing is included internally in the model. These aspects are
discussed later.

Equation (12.15) can be expressed as

(12.16)
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where  is the strain vector for multidimensional behavior, and  is given by

(12.17)

where   is the stress vector. As discussed earlier, the limiting case of the ine-
quality, Eq. (12.16) can be replaced by an equality to show the initiation of
material instability. Hence, the loss of positive-definiteness of the tangent
constitutive (stiffness) matrix,  is expressed as (10)

(12.18)

Structural Instability. A structure is made of material elements with volume,
V, and, according to Eq. (12-16), the stability condition can be expressed as

(12.19a)

or

(12.19b)

or

(12.19c)

where  is the vector of (nodal) displacements,  is the strain-displacement
transformation matrix given by (33, 34)

(12.20a)

and   is the tangent stiffness matrix:

(12.20b)

Hence, for structural instability, we can write the limiting condition as

(12.21)

Thus, when the tangent constitutive matrix, , loses positive-definiteness, the
structural stiffness matrix can also lose positive-definiteness. Many investigators
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have studied material and structural instabilities and resulting localization
and phenomena using the above and other formulations (1–13).

Although the stiffness matrix becomes negative-definite in the softening
zone, it is possible to devise computational algorithms to achieve convergent
solutions. For example, the incremental calculations can be obtained by
ensuring convergence along the fixed applied or computed strain increment.
Also, in the DSC, the incremental calculations are performed for the RI
behavior, and the observed stresses are calculated for the same computed
strains in the RI and observed states. Then the observed stresses are calcu-
lated using Eq. (4.1) through an iterative procedure based on disturbance
from the observed (stress-strain) response. These procedures are described in
Chapter 13.

12.7 Disturbed State Concept: Nonlocality, Microcrack 
Interaction, Characteristic Dimension, 
Mesh Dependence, and Instability

Now, we discuss the DSC and how the foregoing aspects such as nonlocality,
localization, characteristic dimension, and avoidance of the spurious mesh
dependence are incorporated in it; a thermodynamical analysis of the DSC is
presented in Appendix 12.1. Then, the microstructural instability in the DSC
is considered. Examples of theoretical derivations and computer solutions to
illustrate these capabilities of the DSC are presented subsequently.

The DSC incremental equations, Eq. (4.1), can be expressed as

(12.22a)

or

(12.22b)

where   is the relative stress in the material element, Fig. 12.10(a), and W1

and W2 are considered to be weighting functions, Fig. 12.10(b). The RI (local)
stress,  , at a point in the material element can be considered to be modified
due to the effect of the relative stress, , and relative stress increment, ,
Fig. 12.10(c). The equivalent length (or volume or area) of the material ele-
ment, dch, that influences the observed stress, , can be written proportional
to (D 
 dD) as [Fig. 12.10(c)]

(12.23)

d�
˜

a d�
˜

i D d�
˜

c d�
˜

i
�( ) dD �

˜
c

�
˜

i
�( )
 
�

d�
˜

a d�
˜

i W1d�
˜

r W2�
˜

r


�

�
˜

r

d�
˜

i

�
˜

r d�
˜

r

d�
˜

a

dch� D dD
( )



© 2001 By CRC Press LLC

The dimension, dch, occurs in the range of 0 to 1; however, its value is lim-
ited by the ultimate disturbance, Du; therefore,

(12.24)

Equation (12.22) is similar to Eq. (12.1) for the microcrack interaction non-
local damage model (13), Fig. 12.7. The term W1d 
 W2 d in Eq. (12.22) is
similar to the nonlocal (weighted) stress increment,  in Eq. (12.2). How-
ever, in the DSC, the influence of the stress (strain) in the microcracked or FA
region  is included implicitly in Eq. (12.22); in other words, the coupling
or interaction between the RI and FA responses is included through the rela-
tive stress terms. As a consequence, in the DSC, it is not necessary to super-
impose the microcrack interaction effects externally. Thus, the averaging of
the observed stress, ,  Eq. (12.22), allows for the localization and the result-
ing nonlocal effects.

FIGURE 12.10
Averaging and weighting function in DSC.
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For the classical continuum damage model, Eq. (12.22) reduces to (38)

(12.22c)

because the damaged or cracked zone cannot carry any stress (i.e.,  �
� o). Thus, the classical model does not include the coupling effect of the
microcracked (or damage) zone in the formulation. As the observed stress,

, is computed only on the basis of the stresses in the undamaged (or RI)
part, the nonlocal effect due to microcrack interaction is not included in the
classical model. As a result, the classical damage model suffers from spurious
or pathological mesh dependence.

As discussed in Chapter 2, the ultimate disturbance, Du, represents the
invariant volume  (or density) a deforming loose or dense material
approaches irrespective of its initial density. It can be dependent on factors
such as initial mean pressure (p0), (mean) particle dimension (dm) and charac-
teristic or size ratio (��L), where � is the characteristic dimension or width of
material test specimen, and L is the length of the structure or height of the
material test specimen (10, 20, 29). Hence,

(12.25)

Thus, the characteristic dimension (dch)u is dependent on the ultimate dis-
turbance, Du, which is an invariant parameter. It denotes the limit of the influ-
ence of the localization zone, dch, [Eq. (12.23)] around a point.

An interpretation of the characteristic dimension can be advanced based on
deformation of a particulate (solid) material or interface (joint). Figure 12.11
shows schematics of the deformation of a deformable solid square element
(dimension a × a) and interface between (two) deforming materials. As dis-
cussed (Chapter 2), an initially loose granular material may compact continu-
ously, whereas a dense material may first compact and then dilate. The
motions of particles develop along preferred directions, with inclination, i. In
the ultimate state, the material approaches the unique volume,  (or area ),
irrespective of its initial density, , Fig. 12.11(a); the inclination approaches
an ultimate value  corresponding to .

A smooth interface may exhibit continuous compactive normal displace-
ment (vr), while a rough interface may first compact and then dilate along
direction denoted by (i) (Chapter 11), which is proportional to dimensions of
deforming asperities. The asperities are gradually annihilated with shear
loading, and irrespective of the initial roughness (Ri); it approaches the unique
value of normal displacement, , or asperity, , in the ultimate region.

As mentioned earlier, the ultimate values,  and , are dependent on the
mean pressure (p0) or normal stress (�0), mean particle size, dm in the solid or
on the surface of the interface, and the ratio (��L). In the case of the solid, ��L
can represent the size or characteristic ratio, and in the case of interface, it can

d�
˜

a d�
˜

i W1 d�
˜

i
�( ) W2 �

i
�( )
 
�

�
˜

c d�
˜

c

d�
˜

a

Vu
�V( )

Du Du p0, dm,��L( )�

Vu Au

�i( )
iu( ) Au

vr
u iu

Au vr
u



© 2001 By CRC Press LLC

represent the ratio of thickness (t) of the interface zone (or asperity height, h)
to the width, B, of the interface (Chapter 11). Then the limiting values of the
zones of influence (localization) can be expressed as

Solid:

(12.26a)

Interface:

(12.26b)

where au is the ultimate dimension in Au. Thus, in Eq. (12.26) the characteristic

FIGURE 12.11
Deformation in solid and interface material elements.
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length is proportional to disturbance, Du, as Du for solids � Au�A, and for
interface, Du � , where   � ultimate dilation when �n � 0, Fig. 11.6(b).

Furthermore, consider the following form of Eq. (12.22):

(12.27)

Assume that the incremental analysis is performed at the same level of
strain increment,  � � , Fig. 12.12(a) (Chapter 13). Then, Eq. (12.27)
can be expressed as

(12.28)

FIGURE 12.11
(continued)
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Here, D and   (dD), Eq. (4.14), Chapter 4, are functions of Du, A, Z, � and
d�, e.g.,

(12.29)

The constitutive matrix,   in Eq. (12.28), includes the effects of both the
plastic strains (� ) and gradient of plastic strains (d� ). Thus, the DSC model allows
for the gradients of plastic strains in addition to the strains, and can be consid-
ered to allow for nonlocal effects similar to those provided by the gradient-
enriched models, Eq. (12.10) (10). Additional derivations to show the inclu-
sion of gradient effects in the DSC are given in (29).

Now, consider the simple one-dimensional (uniaxial) form of Eq. (12.27),
Fig. 12.12(b):

(12.30)

FIGURE 12.12
Incremental iterative analysis at constant strain level.
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The computed value of d� a is limited with respect to the ultimate distur-
bance, Du:

(12.31)

As Du � 1, � � 0,  � � 0, dDu � 0 and  � 0, the com-
puted value of (d� a)u � 0. Hence, at localization corresponding to Du, there
are always nonzero values of  and  (� ). In other words, localization
occurs at nonzero energy dissipation.

In view of the above, the DSC allows for nonlocal effects, microcrack inter-
action and characteristic dimension. As a result, it avoids spurious mesh
dependence. Examples to illustrate these capabilities are given subsequently.

12.7.1 Approximate Decoupled DSC

The foregoing considerations apply when the coupled DSC, Eq. (12.28), leads
to the following (FE) equations:

(12.32)

where    � dV is the stiffness matrix,  is the incremental
(RI) displacement vector and  is the applied load vector. As noted before,

 is nonsymmetric and becomes negative definite after the peak. Conver-
gent computer results are obtained during incremental analysis at the same
levels of strains  (  � � ). Then the observed stress is found for Eq.
(12.28). Details are given in Chapter 13.

As discussed in Chapter 13, an approximate and decoupled but efficient
procedure can be developed and used. Here, the FE equations are first solved
only for the RI response:

(12.33)

where  � dV,   is the RI elastoplastic constitutive matrix. The
increment RI stress as   is found as

(12.34)

and the FA stress is defined based on given assumptions, such as the critical
state (Chapters 3 and 4):

(12.35)

Then the observed stress,  , is found by using Eq. (12.28) through an iterative
procedure in which the disturbance based on the stress-strain model from the
observed behavior is used as a convergence parameter (Chapter 13), Fig. 12.13.
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FIGURE 12.13
Approximate decoupled analysis and critical disturbances.
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For the foregoing uncoupled procedure, insofar as the FE computer analysis
is concerned, there arise no questions of nonlocality and spurious mesh
dependence, because the computer solution is based on the continuum plastic
hardening response, Fig. 12.13. However, the calculation of  does involve
averaging and the effect of coupling between the RI and RI responses.

12.7.2 Instability Through Disturbance

The limiting case,   Eq. (12.18), results because the states of stress,
strain and disturbance (damage) that define the changing (nonlinear)
response reach certain critical values. For instance, in the case of nonlinear
elastic behavior, the tangent elastic modulus, Et, approaches zero at the peak,
and leads to the limiting condition.

In the DSC, the disturbance, D, is involved in the definition of the tangent
matrix,  , Eq. (12.28). Hence, the examination of the variation of distur-
bance during deformation can provide the conditions in Eqs. (12.18) and
(12.21). For instance, when the disturbance reaches the value of Dcm, microc-
racking can initiate; when it reaches the value of Dp at the peak, localization
may initiate; when it reaches the critical value, Dc, material instability (failure,
liquefaction) can initiate; and when it reaches the value of Df, engineering
failure or fracture occurs, Fig. 12.13 (b).

Assuming that the incremental iterative calculations are performed at the
same level of strains, i.e.,  � � , the  matrix is given by

(12.36)

Figure 12.13(c) shows schematic variations of the first two terms, the last
term and  in Eq. (12.36) (29). When D � 0,  � , i.e., the initial
matrix is the same as that for the RI (e.g., elastoplastic) material. The matrix

�  at the peak, and then it becomes negative (definite) during the fall-
ing (softening) region of the stress-strain response. During the softening
region when  → 0, initiation of instability or failure occurs.

If the FA material does not carry any stress as in the classical damage model
(38), i.e.,  � , as D → 1,  → o as dD → o. However, if the FA material
can carry stress, i.e.,  � ,  will be positive with small magnitude
depending on the properties of the FA material. In that case, microcracking
leading to fracture and instability, which initiates when D � Dc, will grow
and the final failure will occur when D � Df, Fig. 12.13(a), due to large mag-
nitudes of the FA zones.

Hence, the initiation of microcracking and of failure (instability) and frac-
ture can be identified on the basis of threshold values of disturbance such as
Dcm and Dc, which are determined from appropriate laboratory tests.

The foregoing states of the  matrix at the material level will be reflected
at the structural system level, in stiffness matrix, , Eq. (12.21):

(12.37a)
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where

(12.37b)

which will become negative definite after the peak, and at D � Dc, it will indi-
cate structural instability, as   → 0.

Now, we present a mathematical derivation of instability in the DSC.

12.7.3 Stability Analysis of DSC

Mathematical stability analyses of various constitutive models with the
enrichments such as Cosserat and gradient theories are presented in a num-
ber of publications (10–12). The stability analysis of the DSC for the one-
dimensional specialization together with simple examples is presented
below. First, we present an analytical stability condition for the one-dimen-
sional DSC model, Davis (66). Then stability analyses for the DSC using com-
puter finite element method are presented.

12.7.4 Stability Condition for One-Dimensional DSC Model

Consider the one-dimensional problem, Fig. 12.14. The one-dimensional rate
(incremental) constitutive, evolution, equilibrium and strain-displacement
equations are given by

(12.38a)

(12.38b)

(12.38c)

(12.38d)

(12.38e)

(12.38f)

FIGURE 12.14
One-dimensional idealization: stability analysis (66).
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where the superscript a, i, and c denote observed, RI, and FA states, the over-
dot denotes rate, � is a scalar parameter, � is the density, u is the displacement
[Fig. (12.14)], � is the observed strain, and it is assumed that the strains in the
RI and FA parts are equal.

Let   Do, �o, and uo relate to a homogeneous steady state condition.
Consider a perturbation from the steady state, Fig. 12.15, with the resulting
quantities as

(12.39)

where k is the material parameter, 
 is the frequency, t is time, and o denotes
the steady state condition. Now the rate of various quantities in Eq. (12.39)
and their derivatives with respect to x can be defined; for example:

(12.40a)

(12.40b)

and so on.
Now use of Eq. (12.39) in Eq. (12.38a) leads to

(12.41a)

FIGURE 12.15
Perturbation from steady state: stability analysis.
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or

(12.41b)

Similarly, Eqs. (12.38b), (12.38c) and (12.38d) become

(12.42a)

(12.42b)

and

(12.42c)

(12.42d)

Now, the equilibrium and strain-displacement relations, Eqs. (12.38e) and
(12.38f) become

(12.43a)

(12.43b)

Equations (12.41) to (12.43) with Eq. (12.38a) can be written in the matrix
notation as

(12.44)

By setting the determinant of the matrix in Eq. (12.44) to zero, we obtain
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If Eq. (12.42d) is used, we have

(12.46)

In Eq. (12.45), 
�k is the wave velocity, (1 � Do) and Do are the tangent
moduli or slopes at the steady state, Fig. 12.16, and  denotes the
reduction or increase in the effective tangent modulus corresponding to the
first two terms, for positive or negative �, respectively. Assume that  is
always positive, Fig. 12.16; a positive value of � denotes increase in the distur-
bance for the softening response, while a negative value denotes decrease in
disturbance for stiffening or healing, Fig. 12.16.

Now, to investigate stability, we examine the condition when the term on
the right-hand side, Eq. (12.45), becomes negative. Consider the possibility
with respect to Eq. (12.42c):

(12.47)

FIGURE 12.16
Stress-strain response: softening and stiffening.
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Now, for the RI behavior (say, linear or nonlinear elastic or plastic harden-
ing, Fig. 12.16), and as 0 � D � 1, we have

(12.48)

which represents the instability criterion. Now, with  and  �
 and  Eq. (12.48) becomes

(12.49)

With Eq. (12.42d), we have for instability criterion

(12.50a)

(12.50b)

12.8 Examples

Now we consider examples to illustrate various characteristics of the DSC,
namely, spurious mesh dependence, localization and instability.

Example 12.1 Spurious Mesh Dependence
A number of computer analyses using the finite element procedures described
in Chapter 13 were performed to study the issue of spurious mesh depen-
dence with the DSC. Results from two of the studies are described below.

The first study involved computer solutions based on the general DSC
equations in which the constitutive matrix  , Eq. (12.28), is nonsymmetric
and becomes negative definite after the peak and during the softening region.

Figure 12.17(a) shows the finite element mesh for a concrete specimen
tested under multiaxial loading conditions (67). Four different meshes with
4, 16, 64 and 256 elements (8-noded isoparametric) were used.

The specimen was subjected to prescribed compressive displacement load-
ing with increment � 0.05 mm on the top surface. The test specimen involved
no confining stress; hence, the plane-strain idealization was used as an
approximation. In the incremental analysis, strains were averaged over the
Gauss points for the quarter of the specimen (29).
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FIGURE 12.17
Comparisons of finite element prediction with laboratory test results for concrete (29). ©John
Wiley & Sons Ltd. Reproduced with permission.
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The material of the specimen was concrete and was characterized as elas-
toplastic (�0-model) with disturbance (Chapters 4 and 7). The parameters
used are given below (29, 62, 64):

E � 37.00 GPa, � � 0.25;

� � 0.0678, � � 0.755, n � 5.237

a1 � 4.61 � 10�11, � � 0.8262;

A � 688.00, Z � 1.502, Du � 0.875.

Figures 12.17(b) and (c) show comparisons between the computed octahedral
stress, �oct, vs. axial strain, �y, and volumetric strain, �y, vs. �y and the observed
data from the laboratory tests. It can be seen that the results involve essentially
no spurious mesh sensitivity, and that the predictions compare well with the
laboratory observations.

The second study involved the approximate uncoupled FE procedure in
which the incremental analysis, Eq. (12.33), is performed only for the RI
response with  as the constitutive matrix, and observed response is then
computed by using Eq. (12.28).

The finite element analysis for the second study was performed for tension
and compression loading on a rectangular zone made of Pb�Sn (40/60) solder.
Three meshes with 16, 64, and 256 elements were used; Fig. 12.18 shows typ-
ical mesh with 8-noded isoparametric elements (68).

The solder material was characterized using the DSC model in which the
RI material was modelled as elastoplastic (HISS-�0) model (Chapter 7), and
the FA material was assumed to carry hydrostatic stress. The elastic, plastic
and disturbance parameters used are given below:

E � 15.7 GPa, � � 0.40;

� � 0.00081, � � 0.00, n � 2.10

a1 � 0.78 � 10�5, � � 0.46, R � 208 MPa;

A � 0.102, Z � 0.676, Du � 0.90

The load was applied in increments. For the compression case, a total load
of 36.5 MPa was applied in 50, 100 and 100 steps with increments � 0.60, 0.05
and .015 MPa, respectively. For the tension case, the total load of 33.5 MPa was
applied in 50, 100 and 280 steps with increments � 0.40, 0.10 and 0.0125 MPa.

Figure 12.19 shows computed axial stress (�y) vs. axial stress (�y) at point A,
Fig. 12.18, for both the observed (a) and RI (i) responses; similar plots were
also obtained at other points (B to F) marked in Fig. 12.18. It can be seen that

C
˜

ep
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the results are independent of the mesh; i.e., there is no spurious mesh depen-
dence. It may be noted that the stresses and strains are computed in the FE (DSC)
analysis at specific points such as A, without averaging (over Gauss) points.

Example 12.2 Localization
As discussed earlier, strain localization occurs in a deforming material, par-
ticularly during the softening zone, Fig. 12.2(a). Differences of opinion have
been expressed regarding the existence and location of possible slip lines
through the study of the acoustic tensor (10, 69). For example, Zienkiewicz
and Huang (70) have stated that “…. Acoustic tensor is a very unreliable indi-
cator and most of the reported difficulties result simply from using an incor-
rect finite element approximation in the solution of plasticity problems
involved.” The DSC model allows for localization and can also be used for
adaptive mesh refinement (see Chapter 13).

To illustrate the computational and localization capabilities of the DSC, a
number of problems have been solved; they include one-dimensional bar

FIGURE 12.18
Finite element mesh with 256 elements: tensile (and compressive) loadings (68).
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with imperfection, chip-substrate systems in electronic packaging and initia-
tion of liquefaction instability due to localization in saturated porous media
(Chapters 9 and 13). Here, description of the bar problem is presented.

A one-dimensional bar with a central imperfection and subjected to tensile
loading is shown in Fig. 12.20 (10, 29); the middle zone of 10 mm was
assigned tensile strength reduced by 10 percent. The same problem has been
solved by other investigators, e.g., de Borst et al. (10), who studied the local-
ization performance of their gradient-type regularization method. Figure
12.20(b) shows three finite element meshes with 20, 40, and 80 eight-noded
isoparametric elements. The computer analysis involved the nonsymmetric,

, matrix, Eq. (12.28).
The material properties for the bar are given below:

E � 20,000 MPa, �t (tensile strength) � 2.0 MPa;

� � 1.1 � 10�3, � � 0.0, n � 2.10;

a1 � 5.24, �1 � 1.1 � 10�10

FIGURE 12.19
Computed axial stress (�y) vs. axial strain (�y): relative intact (i) and observed (a) responses
for point A.
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Disturbance

The elastic parameter (E) and �t were the same as those used by de Borst,
et al. (10). The parameters for the plasticity (�0) model and disturbance were
evaluated based on the stress-strain curves given in (10). A small non-linear-
ity with plasticity response was considered. The three curves corresponding
to different values of the ratio of the characteristic length (�) to the length of
the bar (L) were smoothed and extended to approach residual stresses of
about 1.00, 0.80 and 0.50 MPa, respectively. The disturbance parameters were
found to be dependent of the ratio, ��L, as shown above.

Figure 12.21 shows computed results using the DSC in terms of strain (�) vs.
length, and stress (�) vs. displacement (u) for three meshes with 20, 40 and 80,
8-noded isoparametric elements, Fig. 12.20(b), and for ��L � 0.05. Figure 12.21(a)
shows consistent convergence for strains with the meshes. With the gradient
model, the strain approached the value of about 1.0 � 10�3 with 160 elements
(10); the DSC model shows similar value with 80 elements.

The expression for the width of localization zone, w, is given by (10):

(12.51)

The localization width, w, predicted by the DSC model, Fig. 12.21(a), is
about 33 mm. This gives the value of � from Eq. (12.51) as 5.25 mm, which
compares well with � � 5.00 mm used in (10). It may be mentioned that the

FIGURE 12.20
Tension bar with imperfection. ©John Wiley & Sons Ltd. Reproduced with permission.

Case �/L A Z Du

1 0.10 500 2.37 0.50
2 0.05 530 1.35 0.60
3 0.025 550 0.31 0.75

w 2���
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DSC does not involve � as a (direct) parameter; hence, the comparison is
meant as an indirect validation. The computed results in terms of stress vs
displacements, Fig. 12.21(b), also show trends similar to those presented by
de Borst et al. (10).

Computed DSC results for ��L � 0.10, 0.05, and 0.025 for strain vs. length
and stress vs. displacement for the 80-element mesh, Fig. 12.20(b), are shown
in Fig. 12.22. The localization width, w, increases with �/L, Fig. 12.22(a), indi-
cating more brittle response for smaller values of �. The values of � using Eq.
(12.51) for the three ratios are found to be 3.2, 5.25 and 7.00 mm, while those
used in (10) were 2.50, 5.00 and 10.00 mm, respectively. The overall magni-
tudes of stress and trends in Fig. 12.22(b) are similar to those from the gradi-
ent theory (10). However, there are some differences due to reasons such as:
(1) the �0-plasticity model with disturbance is used in the DSC, while de Borst
et al. (10) used an elastoplastic (Drucker-Prager) model with the gradient
enrichments, (2) the smoothing and digitization of stress-strain curves, and (3)
in the DSC, the plastic strains are developed from the beginning, while in the
Drucker-Prager model, they develop only after the (peak) stress is reached.

FIGURE 12.21
Computed results using DSC for ��L � 0.05 (29). ©John Wiley & Sons Ltd. Reproduced with
permission.

FIGURE 12.22
Computed results for 80-element mesh for three ��L ratios: (1) 0.10, (2) 0.05, (3) 0.025 (29).
©John Wiley & Sons Ltd. Reproduced with permission.
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Localization behavior of the DSC is further illustrated in Chapter 13 with
respect to other problems such as chip-substrate in electronic packaging.

Example 12.3 Localization and Mesh Dependence
Localization in a biaxial plate specimen with an imperfection, Fig. 12.23, was
analyzed by de Borst et al. (10) using gradient enrichment with the Drucker-
Prager plasticity model. The imperfection was simulated by reducing its
yield strength by 10% compared to that for the plate material. de Borst et al.
used four-node elements with a bilinear displacement field and a Hermitian
(bicubic) interpolation for the plastic multiplier (�), Eq. (12.12). The plate was
subjected to incremental displacement � 0.0001 m at the top nodes.

The DSC model was used here with the RI response characterized as elas-
toplastic with the HISS-�0 plasticity model (30). The material parameters
used are given below:

Elastic: E � 1192 MPa, � � 0.49;
Plasticity: � � 0.001,  � � 0.00,  n � 2.10;

 a1 � 10�10, �1 � 0.20
Disturbance: A � 530,  Z � 1.35,  Du � 0.60

In the DSC analysis, two mesh layout were used: 6 � 18 and 13 � 36 with
8-noded quadrilateral elements.

Figures 12.24(a) and 12.24(b) show computed deformation patterns at the
peak and after the peak for the two mesh layouts, respectively. The deforma-
tions, localization and shear band patterns from the DSC are consistent and

FIGURE 12.23
Plate with imperfection (10, 30). Reprinted with permission from Elsevier Science.
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show essentially the same trends as in the analysis by de Borst, et al. (10);
some differences between the two results can be due to factors such as the
different material model and element orders used in the present analysis.
Figure 12.25 shows load displacement curves from the two mesh layouts;
they indicate no significant mesh dependence. In Fig. 12.25, F is the load
induced at the top, B is the width of the plate,  is the observed or actual
stress, �top is the displacement at the top and H is the height of the plate.

FIGURE 12.24
Deformation patterns in imperfect bar for 13 � 36 mesh (30). Reprinted with permission
from Elsevier Science.

FIGURE 12.25
Load-displacement curves for 6 � 18 and 13 � 36 meshes (30). Reprinted with permission
from Elsevier Science.

�
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These results show that the DSC model provides consistent and satisfac-
tory localization and shear banding and avoids the spurious mesh depen-
dence without the need for external enrichments.

Example 12.4 Instability in the DSC
The first example involves analysis of instability using Eq. (12.49) for given
numerical stress-strain data. Consider the observed stress-strain response,
Fig. 12.26(a). The RI response is simulated as nonlinear using hyperbolic
function as

(12.52a)

where a � 1�Ei and b � 1��u are parameters, Ei is the initial modulus, �u is the
ultimate asymptotic stress, �i is the RI stress and � is the strain. The values of
a and b for the RI curve, Fig. 12.26(a), are obtained as 2.33 � 10�5 and 0.0133,
respectively (Chapter 5). The FA response is simulated as linear elastic given
by

(12.52b)

where � c is the stress in the FA material.
The instability criterion, Eq. (12.49), is expressed as

(12.53)

where � is computed as

(12.54)

FIGURSE 12.26
Stress-strain behavior and variation of tangent modulus.
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where m is the incremental step. Disturbance, D, is expressed as a function of
strain, �, and can be computed by using the stress-strain response as

(12.55)

where  is the measured stress at a (steady) state. Table 12.1 shows the cal-
culations of various quantities.

For the strain (�) levels, before about 0.003, stability is indicated as per Eq.
(12.53). At and after � � 0.003, the values of the left-hand side in Eq. (12.53)
become greater than those of the right-hand side (RHS), indicating instability.
The instability occurs at strain levels beyond the peak stress, � a, of about 35
N/mm2, in the softening zone at disturbance D � 0.45. Figure 12.26(b) shows
a plot of the RI tangent modulus (d� i�d�) vs. strain.

Liquefaction Instability The second example involves instability that
indicates liquefaction in saturated (soil) media. Conventionally, liquefaction is
considered to initiate when the excess pore fluid (water) pressure that increases
during (cyclic) loading equals the initial effective pressure (Chapter 9). In the
DSC, the instability leading to initiation of liquefaction occurs when the micro-
structure reaches the critical threshold state at the critical disturbance, Dc

(Chapters 9 and 13).
Figure 12.27 shows the dimensions of a (cubical) test specimen idealized as

axisymmetric. The specimen is first subjected to initial effective confining
stress, , and then deviatoric (shear) stress, �1 �  where �1 is the axial stress.

The specimens of saturated Ottawa sand at relative density (Dr � 60%)
were tested under three different initial confining stresses,  � 69, 138 and
207 kPa (71–73). The laboratory test behavior in terms of applied deviatoric
stress vs. time, strain vs. time and excess pore water pressure vs. time, as well
as plots of effective stress, ,  � – p, where  is the total stress, and p is the

TABLE 12.1

Instability Calculations

� � a � i � c D dD/d� �i � � c R.H.S.�

0.00021 8.05 8.05 0.18 5.40 � 10�8 0.0043 7.87 80 � 105

.00054 17.71 17.71 0.46 4.2 � 10�6 115.55 17.25 215.50

.00092 25.00 25.90 0.78 0.100 280.27 25.12 60.10
0.00129 29.00 31.88 1.10 0.144 146.69 30.78 77.73
0.00175 33.00 37.57 1.49 0.222 93.61 36.08 103.82
0.0020 35.00 41.00 1.70 0.250 151.40 39.30 50.00

.0030 34.00 47.47 2.55 0.440 148.29 44.92 21.24

.0040 33.00 52.29 3.40 0.546 90.03 48.89 20.98

.0060 29.00 58.20 5.10 0.709 65.07 53.10 10.03
0.0080 24.00 61.68 6.80 0.843 72.37 54.88 3.11
0.010 18.00 63.98 8.50 0.978 33.00 55.48 0.754
0.020 18.00 69.13 17.00 0.981 24.63 52.13 2.22
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FIGURE 12.27
Finite element mesh and loading for triaxial test specimen (72). ©John Wiley & Sons Ltd.
Reproduced with permission.

FIGURE 12.28
Disturbance and curvature vs. deviatoric plastic strain trajectory as function of cycles, N:

� 69 kPa. ©John Wiley & Sons Ltd. Reproduced with permission.�o
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pore water pressure are given in Chapter 9. Disturbance, D, is expressed as

(12.56)

where i, a and c denote RI, observed and FA states, respectively.
The (average) material parameters for the sand are given by

E � 193.00 MPa, � � 0.38;
� � 1.713, � � 0.0, n � 2.45;
a1 � 0.845, �1 � 0.0215;

� 0.20, � � 0.019, e o � 0.593;
A � 4.22, Z � 0.43, Du � 0.99.

Figures 12.28 to 12.30 show plots of disturbance vs deviatoric plastic strain
trajectory, �D (or number of cycles, N) and the curvature (D!) vs. �D(N) for the
three confining pressures (72). Here,

FIGURE 12.29
Disturbance and curvature vs. deviatoric plastic strain trajectory as function of cycles, N:

� 138 kPa. ©John Wiley & Sons Ltd. Reproduced with permission.�o
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(12.57)

The critical disturbance, Dc, occurs when D! is the minimum; it can also be
found approximately at the intersection of tangents to the earlier and later
(saturation) parts of the disturbance curve. The values of Dc for the three con-
fining pressures are found to be 0.82, 0.830 and 0.850, respectively, with cor-
responding cycles 5, 7 and 8. These cycles compare well with those observed
in the tests (Chapter 9) when the pore pressure becomes approximately equal
to the initial confining pressure. Thus, the critical disturbance, Dc, identifies
the initiation of instability leading to liquefaction.

Finite element analyses with one-element mesh, Fig. 12.27, were performed
in which the initial confining pressures were first applied, followed by incre-
mental increase of �1 � . Figure 12.31 shows variations of the trace of the
constitutive matrix,   with �D (as the function of N), for  � 69, 138 and
207 kPa. The trace, which represents the sum of eigen values, first decreases
and then assumes a minimum value. Thereafter, it stabilizes to a small value
as per Eq. (12.28) in the ultimate region when D approaches Du � 0.99, and

FIGURE 12.30
Disturbance and curvature vs. deviatoric plastic strain trajectory as function of cycles, N:

� 207 kPa. ©John Wiley & Sons Ltd. Reproduced with permission.�o
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dD � 0. The trace assumes minimum values at �D � 0.20, 0.15 and 0.10,
respectively, for the three confining pressures. These values correspond
closely with the values at the initiation of liquefaction corresponding to Dc �
0.82, 0.830 and 0.850 in Figs. 12.28 to 12.30 at cycles to liquefaction, Nc � 5, 7,
and 8, respectively. Similar results were obtained with respect to plots of the
trace of the stiffness matrix,    vs. �D. Thus, the mathematical properties
of the constitutive and stiffnesses matrices in the DSC correlate well with lique-
faction instability identified through critical values of disturbance and the
experimental response of the sand.

FIGURE 12.31
Variation of  for different . ©John Wiley & Sons Ltd. Reproduced with permission.Cii

CDC
�o

Kii
DSC



© 2001 By CRC Press LLC

12.8.1 Instability Based on Critical Dissipated Energy
and Disturbance

The microstructural instability (liquefaction) can be identified on the basis of
critical dissipated energy and disturbance. Desai (73) has presented detailed
analysis, correlations between energy and disturbance approaches, advan-
tages of the DSC and application for the prediction of laboratory and field
(Port Island, Kobe, Japan earthquake) behavior of different saturated sands.
Some details are presented in Appendix I.

Appendix I: Thermodynamical Analysis of the DSC

Consider the weighted average observed or actual stress,  ,  as

(12A.1)

with the corresponding strain,  , which can be different from the RI ( ) and
 strains.

Now, from the thermodynamical considerations, the state of the material
can be characterized by its free energy density (� a) in the absence of thermal
effects. The free energy, �� a, is given by

(12A.2)

where � is the mass density, and the stress is given by

(12A.3)

Substitution of  from Eq. (12A.1) into Eq. (12A.2) gives

(12A.4)

or

(12A.5)
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As the process of the growth of disturbance involves energy dissipation, dif-
ferentiation of Eq. (12A.5) leads to the energy dissipation rate, ", as

(12A.6)

where (43)

(12A.6)

where �� i and �� c are the energies for the RI and FA parts, respectively.
Now, " is given by

(12A.7)

�� i and  are positive definite functions of  .  Also, from physical consid-
erations, ��i � ��c in a softening or degrading material because the energy in
the RI state is greater (or equal) to that in the FA state. Furthermore, 
increases with time. Hence,

(12A.8)

which satisfies the Clausius-Duhem inequality as per the second law of ther-
modynamics (1, 9, 11, 15, 43), which will also apply for the case when  �
� .
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��
c

�
˜

a

Ḋ
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The incremental constitutive equations in the DSC and its hierarchical versions
are presented in Chapters 4–12. In this Chapter, we consider the implementation
of the models in computer (finite element) procedures. The finite element static,
dynamic and creep formulations are presented, together with details of a num-
ber of schemes for the introduction of the DSC models in the computer proce-
dures. Here, elastic, plastic, and creep models with disturbance are included
together with thermal effects. Use of the disturbance as the criterion for mesh
adaption is also described. A number of example problems are then presented.
They include computational aspects such as the effect of (load) increments and a
wide range of problems from civil and mechanical engineering, electronic pack-
aging, dynamics and earthquake engineering, solid mechanics and pavements.

13.1 Finite Element Formulation

The following formulations and algorithms are presented in the context of
the finite element (FE) methods. However, they can be adopted, with some
modifications, for other numerical procedures such as the boundary element
method and finite difference technique.

With the displacement based FE method, the stationary potential energy or
the virtual work principle is often invoked to derive the element and assem-
blage questions for problems discretized into FE meshes [Fig. 13.1 (1–4)].
According to the virtual work principle, we can write

(13.1)

where  and  are the vectors of observed or actual stresses and strains
components, respectively, � denotes virtual quantity, V is the volume,   is the
vector of displacement components,  is the vector of applied body forces,
and  is the vector of applied surface tractions on a part of the surface, S1. The
displacement vector  = [u v w] at a point P (Fig. 13.1) is expressed as

(13.2)

where   is the matrix of interpolation functions (of various orders) and 
is the vector of (observed) nodal displacements. The strain vector,  is
obtained from Eq. (13.2) as

(13.3)
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where the prime denotes derivative and  is the strain-displacement
transformation matrix. In general,  is a 6 � 1 vector; however, for a two-
dimensional (plane stress, plane strain, or axisymmetric) idealization,  will
have three to four components (1–4).

Substitution of Eqs. (13.2) and (13.3) in Eq. (13.1) gives

(13.4)

As the virtual displacement, , is arbitrary, the FE equilibrium equations
result as

(13.5a)

where   is the applied load vector:

(13.5b)

FIGURE 13.1
Schematic of finite element discretization.
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If there is an initial stress,  , the load vector,   [Eq. (13.5b)] will be aug-
mented by

(13.5c)

13.1.1 Incremental Equations

For nonlinear analysis, we need to consider incremental form of Eq. (13.5).
Consider equilibrium at the incremental time step, (n � 1), Fig. 13.2; then Eq.
(13.5a) becomes

(13.6a)

where

(13.6b)

and d denotes an increment. Substitution of Eq. (13.6) into Eq. (13.5a) gives

(13.7)

Here, the second term on the right-hand side,   represents the internal bal-
anced load at step n, Fig. 13.2, and  denotes the out-of-balance or resid-
ual load vector.

Now, from Eq. (4.1), Chapter 4, we have the DSC incremental constitutive
equations

(13.8)

in which D can refer to step n or can be evaluated as an average value over
step n to n � 1. Substitution of Eq. (13.8) in Eq. (13.7) gives

(13.9)

where

(13.10a)

(13.10b)
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Here, we used Eq. (4.5), i.e.,   � (1 � 
) , where 
 is the relative strain
(motion) parameter. Now, substitution of Eqs. (13.10) in Eq. (13.9) leads to

(13.11)

Here   is the vector of relative stresses in the FA and RI
parts, and dDn �  from Eq. (4.14). Now, writing 

(13.12)

and substitution of   from Eq. (13.3), we have

(13.13a)

FIGURE 13.2
Incremental analysis.
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or

(13.13b)

where

(13.13c)

is the stiffness matrix.
Note that in Eq. (13.13), the unknown displacement,   is referred to

the RI behavior, while the other quantities such as the out-of-the balance load
refer to the observed behavior.

13.2 Solution Schemes

Equations (13.13) represent the incremental formulations of the DSC in which
matrices  and  are nonsymmetric. During the incremental solution
of Eq. (13.13) (Scheme 1 below), they become negative definite (after the
peak) due to the third term in Eq. (13.12), depending upon its relative magni-
tude in comparison to those of the first two terms.

Simplified schemes can be developed such that the system matrix remains
positive definite, by moving the contribution of the third term to the right-
hand side as an equivalent load vector evaluated at the end of the previous
step (n) (5–8). This is discussed in Scheme 2 below.

In another simplified Scheme 3, the solution is first obtained by solving the equa-
tions for the RI (elastic, elastoplastic hardening, etc.) response, and then evaluating
the observed response from Eq. (13.8) through an iterative procedure in which the
disturbance is modified based on the observed stress-strain behavior (9–11).

In the general procedure, the RI, observed and FA strains are different; this
is discussed below as Scheme 4.

In the foregoing schemes described below, the iterative solution is obtained at
constant values of applied or computed strains (increments) so that unique con-
vergence is achieved for the strain softening behavior. They can provide satisfac-
tory and consistent solutions, but may sometimes suffer from certain limitations.

Scheme 1
In this scheme, the incremental equations are expressed as

(13.13)

where   is evaluated at step n, Fig. 13.3. It is nonsymmetric and
becomes negative definite after the peak. The load applied, , refers to
the observed or actual condition, Fig. (13.3), and the balance load,   is
computed by using the observed stress, , at step n. Solution of Eq. (13.13)
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provides the increments of RI displacement,  , which are used to evalu-
ate the RI strains,  , and stress,  , using the following equations:

(13.14)

and

(13.15)

where   is the RI constitutive matrix which can be characterized by using
elastic, elastoplastic, etc. idealizations.

In the case of the elastoplastic (�0-model), the increment of RI stress, 
is corrected by using the drift correction procedure described in Chapter 7.
Then the converged values,  and the corresponding total stress, ,
are calculated. The iterative procedure is performed at constant strain (incre-
ment), � � , Fig. (13.3). Such constant value can be due to applied
strains (displacement) or, in general, due to the computed strains as a result

FIGURE 13.3
Incremental analysis at constant strain and disturbance.
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of the applied load   or stress. Such a procedure can lead to a unique
converged value of stress for a given strain and avoid the duality of strains if
convergence is sought based on the applied stress.

Now, we need the FA stress    and disturbance, Dn, for the calculation of
the observed stress,  , Eq. (13.8). Details of their calculations are given below.

13.2.1 FA Stress

The FA stress increment is expressed as

(13.16)

where   � [1 1 1 0 0 0].  As discussed in Chapters 3 and 4, a number of sim-
ulations are possible to characterize the FA state; e.g., (a) “void”, (b) hydrostatic
strength, and (c) critical state. These are discussed below.

Void: If the FA part is treated like a “void”, as in the classical damage
model (12), it can carry no stress at all. Then

(13.17)

This assumption is considered to be unrealistic because the micro-
cracked or FA part, which is surrounded by the RI parts, can possess
certain strength.
Hydrostatic strength: If the FA state is assumed to carry hydrostatic stress
or mean pressure, it acts like a constrained liquid. Then it can carry no
shear stress, but can carry hydrostatic stress, Eq. (4.27). Therefore,

(13.18a)

(13.18b)

The FA response can be characterized based on the bulk modulus,
, for the FA material. As a simple approximation, it can be assumed

that the hydrostatic stresses in the RI and FA parts are equal, i.e.,

(13.18c)

Then Eq. (4.19) can be used. Alternatively, Eq. (13.19b) below can be
used to define the FA response.
Critical state:  As discussed in Chapter 4, the constitutive equations that
govern the response of the FA material at the critical state are given by

(13.19a)
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and

(13.19b)

or

(13.19c)

Then the matrix, , is defined by assuming that , and the
shear stress, , is defined based on Eq. (4.31). The constitutive
equations with the assumption of critical state are derived in Chapter
4, Eqs. (4.35), in which the incremental critical stress is given by

(13.20a)

(13.20b)

where

Here, the RI stresses are computed at step (n � 1) and  is computed
using Eq. (13.19c) and  as

(13.21)

where eo is the initial void ratio and e � �(1 � eo)�ii .
Disturbance: The disturbance, D, at steps n and n � 1 is computed as
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and

(13.22b)

where, as an approximation, �D can be evaluated based on the RI
response as

(13.22c)

Disturbance based on the observed response can be used in an itera-
tive procedure; this is described later, in the context of the simplified
procedure (Scheme 3).
The increment, dDn can be found approximately as

(13.23a)

or by using Eq. (4.14b) as

(13.23b)

The computations are performed at constant strain, � � ,
and the foregoing procedure yields  and , which in turn,
can be used to evaluate total values as

(13.24a)

(13.24b)

(13.24c)

(13.24d)

The balanced load,  is found as

(13.26)

With the above quantities at (n � 1), we revise the constitutive matrix
at n � 1 as

(13.27)

Here, as  � � , 
 � 0 in Eq. (13.12) are assumed.
Now, we apply the next load increment, , solve Eq. (13.13) and
repeat the foregoing procedure.
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Iterations. The drift correct procedure (Chapter 7) can entail iterations
during the incremental analysis during which the stress converges
from  to , Fig. 13.3. Iterations can be performed in the com-
putation of , Eq. (13.8), during which the disturbance is revised;
this is described later (Scheme 3).

Scheme 2
The term,  or dD  in Eq. (13.11) is moved to the right-hand side
as

(13.28a)

or

(13.28b)

where

The matrices  and  are positive definite, and  is evaluated at the
end of the previous step n, based on the known values of the terms involved.
The solution of Eq. (13.28) gives the incremental RI displacements, strains
and stresses, and the procedure for the evaluation of the observed stress,

, is similar to that in Scheme 1.
It may be noted that the modification of equations in this scheme that yields

positive definite stiffness matrix does not change the nature of the basic prob-
lem. Also, depending upon the relative magnitude of  in comparison to

, convergence and stability problems may arise for some situations (6).

Scheme 3
This scheme is conceptually similar to Scheme 2 in which the stiffness matrix is
positive definite (5–7). The incremental nonlinear analysis is first performed to
evaluate the RI response in which the stiffness matrix is positive definite
because it relates to the continuum characterization such as nonlinear elastic
and elastoplastic (9,11). The FA response is defined based on the assumptions
described under Scheme 1. Then the observed stress is computed by using Eq.
(13.8) and an iterative procedure during which the disturbance is revised.

Figure (13.4) shows a schematic of the procedure. The RI response is first
evaluated by applying a load increment, , relevant to the RI response, in
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which the RI stress, , is evaluated using the drift correction procedure. The
observed stress, , is evaluated at constant value of the computed RI strain,

� � � . 
Details of Scheme 3: The incremental FE equations for the RI response (elas-
tic, elastoplastic hardening, etc.) are given by

(13.29a)

where  is the incremental vector of RI displacements: 

(13.29b)

and

(13.29c)

The matrices  and   are positive definite, as the RI response is charac-
terized as nonlinear elastic or elastoplastic hardening (�0-model), etc.

FIGURE 13.4 
RI-based incremental procedure for scheme 3.
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Solution of Eq. (13.29) yields   and then incremental strains and
stresses as

(13.30a)

(13.30b)

The drift correction procedure leads to  , Fig. 13.3(a). The total quanti-
ties are evaluated as

(13.31a)

and

(13.31b)

13.2.2 Observed Behavior

The observed incremental stress, , Eq. (13.8) is now found, with appro-
priate model for the FA behavior, as

(13.32)

where the superscript (1) denotes the first iteration. As   and   are
based on the deviatoric plastic strains for the observed response, their values
are not available for the current step (n � 1). Hence, they are computed by
assuming that for the first iteration:

(13.33)

and hence,
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and

(13.34b)
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where  . The term,   can also be computed by using Eq.
(13.23a), which for the first iteration will be zero. Now, the total observed
stress,  , (Fig. 13.5) is found as

(13.35)

which would usually not be the “correct” value as the disturbance is found
on the basis of the RI strains.

In order to improve the computed values in Eqs. (13.32) and (13.35), an iter-
ative procedure can be used, in which the modified value of the observed
plastic strain increment is found approximately as (Fig. 13.5)

(13.36)

where

and  is the elastic constitutive matrix computed by assuming that the unload-
ing elastic moduli in the RI and FA states are equal. Alternatively, modified

FIGURE 13.5
Iterative method for scheme 3.
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value of the observed elastic moduli can be adopted by using the following
equation (13)

(13.37)

where  is the initial elastic modulus and Ec is the modulus in the FA region,
Fig. 13.5. The Poisson’s ratio in   can be assumed to be constant.

The modified (increased) observed plastic strains, , for the second iter-
ation are now given by

(13.38)

Then, the revised deviatoric plastic strain trajectory for the second iteration
is evaluated as

(13.39)

in which the second term on the right-hand side is computed by using
Eq. (13.22c); the deviatoric plastic strains, , relate to the observed strains,
Eq. (13.36). The disturbance is revised by using Eq. (13.22), and the observed
stresses are computed for the second and the subsequent iterations ( j) as

(13.40)

The iterations are continued until convergence at j � m, which can be defined as

(13.41)

At the end of iterations, m, various observed quantities are found for the load
increment,  , as

(13.42a)

(13.42b)

(13.42c)

and the total stresses using Eq. (13.35). The observed or actual load incre-
ments,  , can be found as

(13.43)
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Then, we proceed to the next load increment, n � 2, and so on.
The foregoing procedure involves the basic solution for the RI response, in

which the system matrix is positive definite. However, the coupling between
the RI and FA responses, which affects the observed response, is incorporated
through the iterative procedure in which the disturbance refers to the
observed behavior, defined on the basis of the laboratory test data.
Scheme 4

In the foregoing three schemes, the FE equations, Eq. (13.13), involve solu-
tions for the RI displacements, strains, etc. As described in Chapter 4, it is
possible to formulate the equations in terms of the observed strains and dis-
placements by postulating relations between the FA and RI, and RI and
observed strains, Eqs. (4.49); a schematic is shown in Fig. 13.6. The procedure
is described in Chapter 4, and would lead to different strains in the RI,
observed and FA states. Further investigation would be required for this
scheme, particularly with respect to convergence and computational effort.
Hence, at this time, we recommend use of Schemes 1 to 3, and in particular
Scheme 3, which is found to provide convergent and satisfactory results with
considerable computational efficiency for many problems solved, including
those presented later.

13.3 Algorithms for Creep Behavior

Description of the models based on the multicomponent DSC and overlay
approach for viscoelastic, viscoplastic and elastoviscoplastic behavior is pre-
sented in Chapter 8. Now, we present algorithms for implementing typical
creep models in computer (FE) procedures.

FIGURE 13.6
Schematic of RI, FA and observed strains in material element.
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13.3.1 Algorithms for Elastic, Plastic, Viscoplastic Behavior
with Thermal Effects

Among the factors to be considered for thermal response are (1) the existence
of “initial” strains due to the (known) temperature, and (2) temperature
dependence of material parameters during thermomechanical (cyclic) load-
ing. First, we present algorithmic aspects for initial strains.

13.3.2 Elastic Behavior

In the case of elastic behavior, for isotropic material, the effect of known tem-
perature change causing initial strains are expressed as follows:

(13.44)

where   � [�x �y �z 0 0 0],  � [
T 
T 
T 0 0 0],  and dT is the temper-
ature change = T � T0, where T0 is the initial (previous) temperature, 
T is the
co-efficient of thermal expansion, and T is the current temperature. For two-
dimensional idealizations, Eq. (13.44) is specialized as follows:

13.3.3 Plane Stress

(13.45)

13.3.4 Plane Strain

(13.46)

where E and ν are the elastic parameters.

13.3.5 Axisymmetric

(13.47)
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Then the incremental elastic constitutive relation is given by

(13.48)

where   is the elastic (tangent) constitutive matrix, and  , , and d�(T)
are the vectors of total, elastic and thermal strains, respectively.

If the parameters E and v vary with temperature, they can be expressed in
terms of temperature as (10, 14):

(13.49a)

(13.49b)

where Er and vr are values at reference temperature, Tr (e.g., room tempera-
ture 23�C or 300 K), and cT and cν are parameters found from laboratory tests.

13.3.6 Thermoplastic Behavior

The normality rule gives the increment of plastic strain vector (T) as
(11,14,15)

(13.50)

where Q is the plastic potential function; for associative rule, Q ≡ F, where F is
the yield function (Chapters 6 and 7). Now, the total incremental strain vector

 is given by

(13.51a)

where  (T) is the strain vector due to the temperature change. Hence,

(13.51b)

and

(13.51c)
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where   � [1 1 0] for the two-dimensional case, and [1 1 1 0 0 0] for the
three-dimensional case.

Now, the consistency condition gives

(13.52a)

Therefore,

(13.52b)

Then, use of Eqs. (13.51) and (13.52) gives

(13.53a)

Therefore,

(13.53b)

The parameters in the elastoplastic model, e.g., HISS-�0, can be expressed
as a function of temperature as

(13.54)

where P is any parameter such as E, ν, Eq. (13.49); �, �, R, n, Eq. (7.1); a1, �1,
Eq. (7.11); Pr is its value at reference temperature Tr , and c is parameter found
from laboratory tests.

13.3.7 Thermoviscoplastic Behavior

The total temperature dependent strain rate vector, , is assumed to be the
sum of the thermoelastic strain rate, , thermoviscoplastic strain rate,

, and the thermal strain rate due to temperature change dT,  , as 

(13.55)
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Here, the thermoviscoplastic strain is contributed by creep and temperature
effects.

With Perzyna’s (16) viscoplastic theory, Eq. (8.2d) (Chapter 8), Eq. (13.55)
can be written as

(13.56)

where � and � are temperature dependent fluidity parameter and flow func-
tion, respectively. Then the constitutive equations are given by

(13.57)

Viscous or creep behavior requires integration in time. The thermovisco-
plastic strain rate (Chapter 8) is evaluated at time step n, Fig. 13.7. Then the
strain rate at step (n � 1) can be expressed by using Taylor series expansion
as (14, 17)

(13.58)

where  is the stress increment,  is the temperature increment, and ,
 denote gradient matrices at time step, n; their details are given in Eq. (8.45),

Chapter 8.

FIGURE 13.7 
Time integration for viscoplastic strains.
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The increment of viscoplastic strain, , can be found during the
time interval �tn � tn�1 � tn, Fig. 13.7, as

(13.59)

where 0 � � � 1. For � � 0, Eq. (13.59) gives the Euler scheme, for � � 0.5 the
Crank-Nicolson scheme, and so on.

Now, Eq. (13.57) can be written in the incremental form as

(13.60)

Use of Eqs. (13.58) and (13.59) in (13.60) leads to

(13.61)

where

The finite element equations at step (n � 1) can now be written as

(13.62)

where

and

Solution of Eq. (13.62) for   allows calculation of , , and
 required for the next load increment (n � 2), and so on.
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expressed as functions of temperature using Eq. (13.54). Then the DSC model can
be implemented in the finite element procedure; details are given in Chapter 8.

13.4 Algorithms for Coupled Dynamic Behavior

The previous algorithms were developed for dry materials; hence, the
stresses were effective. We now present algorithms for fully and partially sat-
urated systems discussed in Chapter 9.

13.4.1 Fully Saturated Systems

The finite element procedure is based on the coupled theory of dynamics of
porous saturated media proposed by Biot (18,19). The present procedure
allows for various additional factors such as nonlinear behavior of porous
(soil) media and interfaces, characterized by using the disturbed state concept
(DSC) constitutive models. The following procedure is presented for
dynamic analysis; it can be specialized to time dependent deformation (con-
solidation) and static behavior also.

13.4.2 Dynamic Equations

The coupled deformation and flow equations are given by (18–25)

(13-63a)

or

and

(13.63b)

where �ij is the stress tensor,  � Vv/(Vv � Vs) is the porosity, Vv is the volume
of voids, Vs is the volume of solids, Fig. 13.8, �s is the solid density, �f is the
fluid density, � is the density of the solid-fluid mixture, bi is the tensor of body
force per unit mass, ui and ufi  are the displacement components in solid skel-
eton and fluid, respectively, Fig. 13.9, the overdots denote time derivative, kij

is the permeability tensor, and wi denotes the displacement of the fluid relative
to that of solid skeleton, Fig. 13.9, given by

(13.64)
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where Qi  is the volume of fluid moving through an area of the skeleton normal
to the ith direction, and Ai is the area normal to the ith direction (i � 1, 2, 3).

Equations (13.63) represent coupled differential equations with two vari-
ables u and w. Formulation based on these equations is general, and is
referred to as u – w. If the relative acceleration, , between the solid and fluid
displacement is ignored, Eqs. (13.63) lead to the u – p formulation, in which p
is the (excess) fluid (pore water) pressure (22). For quasistatic problems, such
as consolidation, .

13.4.3 Finite Element Formulation

The approximation functions for u and w are expressed as (Fig. 13.10) (24)

(13.65a)

and

(13.65b)

FIGURE 13.8
Porous saturated material element and porosity (24).
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FIGURE 13.9
Deformations in two phase element.

FIGURE 13.10
Finite element discretization and approximation function (24).
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where ui and wi (i � 1, 2, 3) are the solid displacements and relative displace-
ments at a point, respectively; Nu and Nw are the interpolation functions corre-
sponding to u and w, respectively; a � 1, 2, …Nue, b � 1, 2, … Nwe; Nue, Nwe �
node numbers per element for u and w, respectively; and Ui and Wi denote
the nodal solid and relative displacements, respectively.

Use of the virtual work principle and substitution of various quantities and
derivatives, Eq. (13.65), lead to the following finite element equations (24):

(13.66)

where a, c � (1 to NN); b, d � (1 to MM) with NN = MM = number of nodes
in the whole domain, and i, j � (1, 2, 3), and

(13.67a)

(13.67b)

(13.67c)

(13.67d)

(13.67e)

(13.67f)

(13.67g)

In Eqs. (13.66) and (13.67), the integration domain V is the whole volume
and S the whole boundary, as sums of element volumes and surfaces. Equa-
tion (13.66) has c, d, and j as dummy indices (summation indices), and a, b,
and i as free indices. Therefore, there are (NN � MM) � 3 equations in Eq.
(13.66). �ij and p in the third term on the left side in Eq. (13.66) are expressed
in the incremental form as

(13.68a)
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and

(13.68b)

where �ij is the strain tensor for the solid skeleton, p is the fluid (pore water)
pressure,   is the elastoplastic constitutive tensor for the relative intact
behavior (see later), � � wi,i  is the change in fluid volume in a unit volume of
skeleton and

(13.69)

Kf and Ks are the bulk moduli of fluid and solids, respectively, and a is given
by (19, 21–24)

(13.70a)

which for elastic porous materials reduces to

(13.70b)

where K is the bulk modulus of the soil skeleton. For elastoplastic materials,

(13.71)

13.4.4 Time Integration for Dynamic Problems

Equation (13.66) may be written in general as (24)

(13.72)
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Mij, Cij, and Kij denote the components of mass, damping, and stiffness matri-
ces of the system, respectively; fi represents the force function or loads on the
system; xj, , and  are displacements, velocities and accelerations at each
degree-of-freedom, and include both Uj and Wj components. To solve the ini-
tial value problem is to find xj � xj(t) satisfying Eq. (13.72), given initial con-
ditions x(0) and (0),  and force function fi(t). A number of algorithms are
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ẋ j ẋ̇ j
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available for this purpose; the Newmark (�) method is used here and is
described below.

The time domain is divided into time steps as shown in Fig. (13.11). Time
integration is employed to find values xj,  and at time tn�1 when their val-
ues at time tn are known; here

(13.73)

where �t is the time increment from tn to tn�1. By using the Taylor’s series
expansion, xi(tn�1) is expressed as

(13.74)

In the Newmark’s method (1, 3, 26),   is approximated as

(13.75)

where � is a parameter, and  denotes time between tn and tn�1, Fig.
(13.11). From Eqs. (13.74) and (13.75),   can be expressed as

(13.76)

Similarly,   can be expressed as

(13.77)

FIGURE 13.11
Dynamic time integration.
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ẋ̇i tn�1( )
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and   in Eq. (13.77) is approximated as

(13.78)

where � is another parameter, and  is the intermediate time, Fig. (13.11).
From Eqs. (13.77) and (13.78),   can be expressed as

(13.79)

Substitution of Eqs. (13.76) and (13.79) into Eq. (13.72) yields

(13.80)

where
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(13.81b)

(13.81c)

In the above equations, the mass matrix Mij and damping matrix Cij are con-
stant. For linear problems, stiffness Kij is constant and xi (tn�1) can be obtained
by solving Eq. (13.80). For nonlinear problems, the stiffness matrix Kij

depends on xi (tn�1), and iterative techniques such as Newton-Raphson
method have to be used to solve for xi (tn�1). After xi (tn�1) are found from Eq.
(13.80), (tn�1) and (tn�1) may be found from Eqs. (13.76) and (13.79).

The stability of the Newmark’s scheme for linear systems has been investi-
gated by many researchers and is expressed as (3, 26)
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13.5 Implementation

The dynamic Eqs. (13.66) can be written in matrix notation as (24, 25)

(13.83)

by denoting ,  and , Eq. (13.83)
can be written as

(13.84)

Time integration with Eq. (13.84) using the Newmark �-method then leads
to

(13.85)

It usually requires iterative-incremental analysis to solve Eq. (13.85). Then, at
iteration r, Eq. (13.85) can be written as

(13.86)

where  is the increment of displacement during iteration, r, for
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and

(13.87c)

In Eq. (13.87), the mass   and damping matrices   are assumed to
remain constant, and for nonlinear material behavior, the stiffness matrix 
varies and depends on displacement and pore pressure  , through the con-
stitutive matrix,  , Eq. (13.12), as

(13.88)

Here we assumed that the strains in the  RI, observed and FA parts are com-
patible, and

(13.89)

where  is the RI matrix,  is the FA matrix and dD, the increment or rate
of D, expressed as

(13.90)

The vector  can be derived based on the given yield and disturbance
functions. In the computer procedure, dD can also be evaluated as dD �
D(tt+1) � D(tn).

Thus,   and  are constant and the tangent stiffness matrix, ,
involves variations during the nonlinear behavior because  is evaluated
as the tangent quantity.

13.6 Partially Saturated Systems

Computer (FE) procedures for partially saturated materials have been pro-
posed by many investigators, based on constitutive models discussed in
Chapter 9. In a general and coupled formulation, displacements, fluid pres-
sures, and suction are considered as independent variables. (See References
in Chapter 9, and 27–29.) Such coupled procedures can, however, be com-
plex and involve significant computational effort. It is possible to develop
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approximate methods such as those based on the residual flow procedure
(Chapters 9 and 30), in conjunction with schemes in which some of the quan-
tities (pressure, suction) are given or evaluated from another procedure.

13.7 Cyclic and Repetitive Loading

Cyclic and repetitive loading, involving loading, unloading and reloading,
occur in many problems such as dynamics and earthquakes, thermomechan-
ical response such as in electronic packaging and semiconductor systems, and
pavements. If the simulated behavior involves continuous increase in stress
along the same loading path, without unloading and reloading, Fig. 13.12, it is
often referred to as monotonic or virgin loading. The unloading and reload-
ing are often referred to as nonvirgin loading. Loading in the opposite side,
i.e., negative side of the (stress) response, is sometimes referred to as reverse
(reloading) loading. Cyclic loading without stress reversal is often referred to
as one-way, while with stress reversals, it is referred to as two-way. In the case
of degradation or softening, decrease in stress beyond the peak occurs, but it
is considered different from unloading. For the virgin loading, the constitu-
tive equations, Eq. (13.12), apply. For nonvirgin loading, it is required to con-
sider additional and separate, often approximate, simulations.

FIGURE 13.12
Schematic of loading, unloading, and reloading.
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In the case of an elastoplastic model (e.g., HISS-�0), the simulated virgin
response allows for the effect of plastic strains and plastic hardening or yield-
ing, Fig. 13.13(a). In the case of the softening behavior, the plasticity model
can simulate the RI behavior, and the use of DSC allows for the degradation,
Fig. 13.13(b).

Plastic deformations can occur during unloading and reloading, and can
influence the overall response, Fig. 13.13. Although models to allow for such
behavior have been proposed in the context of kinematic harding plasticity (31,
32), they are often relatively complex and may involve computational difficul-
ties. Hence, approximate schemes that are simple but can provide satisfactory
simulation have often been used; one such method is described below.

FIGURE 13.13
Schematic of elastoplastic and softening (DSC) response.

© 2001 By CRC Press LLC



13.7.1 Unloading

As indicated in Fig. 13.12, the unloading response is often nonlinear. How-
ever, as a simplification, it is often treated as linear elastic. Here, both linear
and nonlinear elastic simulations are included. For the nonlinear case, of
which the linear simulation is a special case, the following procedure is used
(24, 25). During unloading, the incremental stress-strain equation is given by

(13.91)

where   is the elastic constitutive matrix with variable elastic unloading
modulus, , Fig. 13.14, and the Poisson’s ratio, ν, is assumed to be constant.
The modulus  is given by

(13.92)

FIGURE 13.14
Unloading interpolation function for CTC and SS tests (25).

d�
˜

C
˜

ULd�
˜

�

C
˜

UL

Eu

Eu

1
Eu
----- 1

Eb
----- 1

Ep
-----��

© 2001 By CRC Press LLC



where  is the slope of the unloading curve (response) at the point (A) of
unloading, Fig. 13.14(a), and  is the “plastic” modulus, which is evaluated
by using the following equation:

(13.93)

where K1 and K2 are constants, pa is the atmospheric pressure (used for non-
dimensionalization), and  and  are the second invariants of the devia-
toric stress tensor, Sij, at the start of unloading (point A), and at the current
state during unloading, respectively. The values of K1 and K2 are found from
laboratory tests. For triaxial compression (CTC: �1 � �2 � �3) and simple
shear (SS) tests (Chapter 7, Fig. 7.13), their values are derived as follows:

Triaxial Compression (CTC) Test

(13.94a)

(13.94b)

where  is the elastic modulus (slope) at the end of unloading and  is the
“plastic” strain, Fig. 13.14(a).

Simple Shear (SS) Test, Fig. 13.14(b)
The relation between the elastic (Young’s) and shear moduli (G) is given by

(13.95a)

(13.95b)

Substitution of Eq. (13.95) into Eq. (13.94) and replacing  by ! (shear stress)
and  by  , where  is the “plastic” shear strain, Fig. 13.14(b),
leads to

(13.96a)

(13.96b)
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where and ! are the shear stresses at the point of unloading and during
unloading, respectively.

The values of  and  are evaluated by using the following equations:

(13.97a)

and

(13.97b)

13.7.2 Reloading

Figure 13.15 shows two cases of reloading, for the one-way and two-way. In
both cases, the following constitutive equation is used:

(13.98)

where R is the interpolation parameter such that 0 � R � 1; R � 0 for the
beginning of reloading and R � 1 at the end of reloading. Thus, at the begin-
ning of reloading, the behavior is elastic, given by

(13.99a)

At the end of reloading, virgin response resumes:

(13.99b)

The reloading elastic modulus, , for the two cases, Fig. 13.15, is different.
For case 1, the elastic modulus at the start of reloading, , is given by

(13.100a)

where  is the unloading slope at the beginning of unloading, Fig. 13.15(a).
For case 2,

(13.100b)

where  is the slope at the end of unloading, Fig. 13.15(b).
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The interpolation parameter, R, for both cases is found as

(13.101)

where   and  are the second invariants of the stress tensor at the begin-
ning of the last unloading and current level, respectively.

In computer (finite element) analysis, the reloading stress path may be
between the above two cases. Then, a parameter, S, is defined as an indicator
of the direction of reloading:

(13.102)

where �1 � S � 1, , , and   are the stress vectors before unloading, for the
current stress and for the next stress increment, respectively; S � �1 indicates

FIGURE 13.15
Two reloading cases (25).
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case 1 reloading, while S � 1 indicates case 2 reloading. Now, is interpo-
lated between  and E as

(13.103a)

Then, the modulus for reloading, , is found as

(13.103b)

where E is the elastic modulus of the material, which is often found as the (aver-
age) slope of the line joining the unloading and end of unloading points or the
initial slope, Fig. 13.15(a). Then at the beginning of reloading when R � 0,  �

, which ensures smooth transition from unloading to reloading, Fig.
13.15(b). At the end of reloading (R � 1),  � E, which ensures smooth tran-
sition from reloading to the virgin loading.

13.7.3 Cyclic-Repetitive Hardening

In the case of elastoplastic behavior, there exists an in situ yield surface (F0) cor-
responding to the initial or past state of stress experienced by the material
before the present cyclic or repetitive load is applied, Fig. 13.16. When unload-
ing occurs, the plastic strains can change (increase or decrease), and hence, for
the reloading after the unloading, the yield surface that defines the elastic
limit usually expands from F0 to the initial surface, Fi, corresponding to each
cycle N (� 1, 2, …). As a result, the magnitudes of plastic strains decrease from
one cycle to the next, which is often referred to as cyclic hardening.

For a given load or stress (increment), the final or bounding surface, Fb, can
be defined by solving for the incremental equations, Eq. (13.13). In the case of
repetitive loading under constant amplitude of load (stress), Fig. 13.16(b), the
maximum load (Pmax) will be the amplitude of the load (stress). In the case of
cyclic (one-way) loading, Fig. 13.16(c), the bounding surface, Fb, would
change for each stress increase. Note that in this repetitive load analysis, the
time effects are not included.

Mroz et al. (31) proposed a model for cyclic hardening, which was adopted
by Bonaquist and Witczak (33) for materials in pavement structures. A similar
and approximate (modified) method for cyclic hardening is presented below.

For the given load or stress increment, two bounding surfaces are defined,
F0 and Fb, Fig. 13.16, and the corresponding hardening functions and param-
eters are 
0 and 
b, Eq. (7.11), and �0 and �b, respectively. Here, � denotes the
accumulated plastic strains or trajectory:

(13.104)
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where  is the vector of incremental plastic strains. Then the initial yield
surface parameter, �i, for a given cycle, i, is expressed as

(13.105a)

where hc is the cyclic hardening parameter, determined from laboratory
repetitive load tests. It controls the rate of expansion of the initial yield sur-
face, Fi, at the end of unloading for a given cycle, N. If hc � 0, no cyclic hard-
ening occurs. Bonaquist and Witczak (33) considered repeated tests involving
the same stress (amplitude) to an initially unstrained material specimen with
�0 � 0. Then, Eq. (13.105a) becomes

(13.105b)

FIGURE 13.16
Cyclic hardening under repeated loading.
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or

where � is the plastic strain trajectory up to cycle N. Plots of normalized tra-
jectory �
�b vs. number of cycles are used to find hc using a least square pro-
cedure. For a granular material, hc � 1.06 was found (33).

With the above formulation, the value of �i, Eq. (13.105) is used to evaluate
the hardening function, 
i, Eq. (7.11). It is used to define the elastoplastic con-
stitutive matrix  � , Eq. (7.51), and the general DSC matrix ,
Eq. (13.12), when reloading occurs.

13.8 Initial Conditions

In the foregoing algorithmic procedures, it is necessary to establish the initial
conditions, which usually involve the location of the initial state (I) on the
yield surface, F, Fig. 13.17a, for the RI response, and the initial disturbance,
D0, Fig. 13.17b.

13.8.1 Initial Stress

The initial state of stress,  , is often known from the in situ or residual
stresses. We assume that the observed and RI stresses are initially equal, i.e.,

. The value of the initial hardening function, 
o, is found from Eq.
(7.11) as (34)

(13.106)

where the subscript 0 denotes initial quantity. Thus, the initial state I 
on the yield surface, Fig. 13.17(a), is defined. The value of the initial plastic
strain trajectory, �0, can be found as

(13.107a)

If the initial state of stress is isotropic or hydrostatic, the foregoing equations
are simplified as

(13.108a)
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and

(13.108b)

and

(13.108c)

13.8.2 Initial Disturbance

It is usually difficult to define the initial disturbance, D0, due to effects such
as existing microcracking and anisotropy, and manufacturing defects. How-
ever, it can be possible to quantify it on the basis of nondestructive measure-
ments and/or mechanical testing.

Nondestructive ultrasonic velocities and attenuation can be measured in
different directions in a laboratory test specimen. Such measurements for

FIGURE 13.17
Initial state: hardening and disturbance.
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directional velocities (Vx, Vy, and Vz ) were obtained; the average velocity 
for cubical specimens of a cemented sand are shown in Fig. 13.18 (13, 35). The
velocities before the application of the load can be used to define D0 as 

(13.109)

where in Fig. 13.18,  � 1175 m/s,  � 820 m/s, and  is the average
observed velocity.

Mechanical tests on specimens in the initial condition, involving applica-
tion of small values of hydrostatic stress, �1 � �2 � �3 � �0, can provide val-
ues of the corresponding strains, �10, �20, and �30. By using elastic moduli
(e.g., E and � or K and G), the plastic strains can be found from 

(13.110)

which in turn can be used to find the deviatoric plastic strains,  , and the
trajectory, �0. Then the initial disturbance, D0, is found from

(13.111)

The value of can be found approximately as

(13.112a)

FIGURE 13.18
Measured ultrasonic P-wave average velocity: CTC 30 test (�3 � �207 kPa).
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where

(13.112b)

The values of  , 
0 and D0  are then used to define the constitutive matrix,
, for the first load increment in Eq. (13.12). Then various quantities dur-

ing the incremental loading are found as

(13.113a)

(13.113b)

(13.113c)

(13.113d)

where N denotes the number of load increments.

13.9 Hierarchical Capabilities and Options

The DSC allows integrated and hierarchical capabilities to adopt, depending
upon specific need(s) and materials, models for various features such as elas-
tic, plastic and creep responses, microcracking leading to fracture, degrada-
tion and softening and stiffening or healing. Thus, if the general constitutive
matrix, , Eq. (13.12), is developed, one can choose various hierarchical
options, depicted in Table 13.1.

The computer (FE) procedures with the DSC model can permit solutions
of problems with options for materials that are characterized as elastic, plas-
tic, and creep, with inclusion of degradation and stiffening. For instance,
Table 13.2 shows twelve such options available in the codes (8, 10, 25). It may
be noted that the user needs to provide input for only those parameters rele-
vant for the specific hierarchical model chosen.
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TABLE 13.1

Hierarchical Options in DSC

TABLE 13.2

Various Options in the DSC and Parameters

Parameters

Model Elastic Plastic Creep Disturbance
Thermal

Effects (T)�

1. Elastic (E) E, v 2. E(T)
3. Elastoplastic classical 

(ep 
c) e.g., von Mises
E, v �y 4. ep 
c(T)

5. Elastoplastic 
hardening (ep 
h)

E, v �, �; n; a1, �1 6. ep 
h(T)

7. ep 
h with 
disturbance

E, v �, �; n; a1, �1 A, Z, Du 6. ep 
h(T)
with
disturbance

9. Elastoviscoplastic�� E, v �, �; n; a1, �1 �, N 10. evp(T)
11. Elastoviscoplastic 

(evp) with 
disturbance��

E, v �, �; n; a1, �1 �, N A, Z, Du 12. evp(T) 
with
disturbance

�Thermal effects are included by expressing parameters as in Eq. (13.54).
��Other creep overlay models (e.g., ve, vevp) (Chapter 8) are also available in the codes.
�y � yield stress, T � temperature.
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13.10 Mesh Adaption Using DSC

Adaption of the finite element mesh during loading, and depending on the
physical state of the deforming material, has been one of the active areas of
recent investigations. For the case of linear or nonlinear elastic and plastic
hardening materials when the problem is self-adjoint elliptic and the system
matrices are positive definite, adaptive strategies such as those based on
energy norm are well established. However, for problems involving micro-
cracking, localization, and softening or degradation, there does not appear to
exist a global error norm similar to the energy norm for the self-adjoint ellip-
tic problem (36). Hence, it becomes necessary to consider and develop criteria
for adaptive strategies based on other scalar variables (36–38). Zienkiewicz et
al. (36) suggested definition of error (e) in terms of a scalar variable, �, as

(13.114)

where � is the exact solution and  is the finite element solution; this defi-
nition may, however, be difficult to implement, as the value of � is not
known. However, we can now use the scalar disturbance, D, in the DSC,
which is computed and available as a part of incremental nonlinear analysis,
to develop criteria for mesh adaptivity. In the following, we describe an adap-
tive mesh procedure in which the traditional approach is used in the prepeak
region, while a disturbance-based procedure is used for the postpeak region
in which localization occurs and grows (39).

13.10.1 Prepeak Response

The uniform degree of error distribution (UDED) scheme proposed in (40) is
used. Here, the error, e(i), is expressed as

(13.115)

where   is the vector of computed stresses (from the displacement FE for-
mulation),   is the vector of “exact” stresses, and i denotes an element. The
exact stress, , is computed by using a hybrid FE procedure; details of the
procedure are given in (39, 41).

The strategy for generating a nearly optional mesh is based on the follow-
ing criterion:

(13.116)
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where e is the computed error, Eq. (13.115), and  is the permissible error, say,
5%. The approximation error, em, in each element is given by

(13.117)

where m is the number of elements in the mesh, and   � hmax is the norm
or maximum size of the element. The local mesh enrichment indicator, �, is
given by

(13.118)

where  is the energy norm for element i:

(13.119)

The element size (h) for the optimal mesh is evaluated as (40)

(13.120a)

where hi is the original maximum size of elements, and p is the order of inter-
polation functions. For elements near singularities of order, k, the new ele-
ment size is estimated from

(13.120b)

where k represents the strength of the singularly, which usually is adopted to
be equal to 0.50.

13.10.2 Postpeak Response

As stated earlier, the foregoing UDED scheme alone may not apply or is not
sufficient for the postpeak region with localization. Here, the disturbance, D,
Eq. (13.22) is used as the “error” indicator for mesh adaption. For example,
critical values of disturbance, � 0.5, 0.75, or 0.90 can be specified as the
indicator; that is, during the incremental analysis when the critical distur-
bance, , is reached and exceeded, mesh refinement is initiated. As the dis-
turbance is expressed in terms of plastic strain trajectory or dissipated energy,
it represents the intensity of (strain) localization. Then, use of disturbance as
the remeshing indicator is consistent with the physical state of the structure
undergoing microcracking and localization.
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The error indicator in the postpeak region is given by

(13.121)

The error ratio for stress is given by

(13.122)

where e0 is the lowest error and ei is the error in any element. The mesh is
refined by using the following strategy:

(13.123)

where h0 is the size of the element with the lowest error, and t is the exponent;
usually, t � 2.0 provides satisfactory results. Examples of adaptive meshing
using the above procedure are given in (39).

13.11 Examples of Applications

Typical problems involving computer analysis of factors such as localization,
spurious mesh dependence, and stability are included in Chapter 12. Now,
we describe solutions of a wide range of problems (civil, mechanical, elec-
tronic packaging, pavements) obtained by using two- and three-dimensional
computer procedures with the DSC and its hierarchical versions (10, 25, 42).
The computer predictions are compared with analytical, and from other
numerical procedures, and 
or laboratory and field behavior of practical engi-
neering problems.

Example 13.1:  Material Block: DSC Model, Effect of Load Increments

Figure 13.19(a) shows a one-element material (concrete) block, idealized as
axisymmetric, and subjected to the total vertical load of 80 MPa. The load is
applied in different incremental steps equal to 20, 50, and 100 (43). The mate-
rial properties are given below (6, 44).

Elastic: E � 3.7 � 104 MPa, v � 0.25;
Plasticity (HISS �0-Model): � � 0.06784, � � 0.75526, 3R � 47.5 MPa,

n � 5.23697, 
Disturbance:  A � 668, Z � 1.50277, Du � 0.875
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Figure 13.19(b) shows computed vertical stress (  � relative intact, and   �
observed or actual), and octahedral shear stress   versus the axial strain

 responses for the analyses with three different load steps. The simplified
DSC scheme 3 was used for these calculations. It can be seen that the computed

FIGURE 13.19
Effect of load steps or increments.
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results are essentially the same from the analyses with three sizes of load steps,
indicating the validity and robustness of the simplified solution scheme 3.

Example 13.2:  Load (Footing) on Half Space (Soil): Elastoplastic
(HISS-�1) Model

Computer algorithms for the finite element method and routines for the imple-
mentation of the HISS-�0 and �1 models have been presented in (5, 34). The FE
procedure was used to predict the laboratory-measured stress and deformation
behavior of a circular footing on cohesionless material (Leighton Buzzard sand).

The material parameters for the sand were obtained from a comprehen-
sive series of laboratory multiaxial and triaxial tests on cubical and cylindri-
cal specimens under different initial confining pressures (�0 � �3) and
densities (5, 34). The elastic modulus, E, was considered to vary with depth
(or �3) as (34)

(13.124)

where K is the modulus,  is the modulus exponent and pa is the atmo-
spheric pressure. The material parameters for the sand with relative density
Dr � 95% were found by using procedures described in Chapters 4 to 7; they
are given below.*

Footing (steel)
Elastic: E � 30 �  psi (207 GPa), � � 0.30
Soil:
Elastic:  K � 1256,  � 0.70, � � 0.29;
Plasticity (HISS �1-Model): � � 0.10212, � � 0.36242, n � 2.5;

a1 � 0.134575, �1 � 450.0, a2 � 0.0047,
�2 � 1.02;

Nonassociative: " � 0.29
Atmospheric Pressure: pa � 14.7 psi (101.35 kPa)
In situ Stress Ratio:  Ko � 0.5
Unit Weight of Sand:  � 0.10 lb/  (27.14 KN
 )

Here, the hardening (
) function is given by

(13.125)

The finite element mesh for the soil and circular footing (steel) is shown in
Fig. 13.20. It consists of 207 nodes and 58 eight-noded elements; 2 � 2 Gauss
integration was used. The total footing load of 25.0 psi (172 kPa) was applied
in steps of 2.50 psi (17 kPa), as it was done in the laboratory footing test (5).

* ©John Wiley & Sons Ltd. Reproduced with permission.
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Figures 13.21 and 13.22 show comparisons between predicted and measured
displacements at the center node (No. 15), and at a distance of 12.0 inches (30.0 cm)
from the center of the footing (node 138), respectively. Figure 13.23 shows com-
puted and measured vertical stress (�y)  in the element under the footing. The
predictions and measurements show satisfactory correlations.

FIGURE 13.20
Finite elements mesh of soil-footing (1 in � 2.54 cm) (5, 34) (with permission from Elsevier
Science and ©John Wiley & Sons Ltd; reproduced with permission). 

FIGURE 13.21
Load displacement response at center of footing (Node 15) (34). ©John Wiley & Sons Ltd.
Reproduced with permission.
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Example 13.3:  Layered (Pavement) System: Elasticity and Elastoplastic
(HISS-�0) Models

Permanent deformation leading to rutting is one of the important distresses in
the analysis and design of highway and airport pavements (45, 46). The finite
element procedure with various characterizations involving elastic and elasto-
plastic (HISS-�0) models for different layers was used to analyze the develop-
ment of deformations and stresses in a four-layered pavement system; the
finite element mesh, idealized as axisymmetric, is shown in Fig. 13.24.

FIGURE 13.22
Load displacement response at 12 inches from center of footing (Node 138) (34). ©John Wiley
& Sons Ltd. Reproduced with permission.

FIGURE 13.23
Normal stress, �y under the footing (34). ©John Wiley & Sons Ltd. Reproduced with per-
mission.
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Laboratory triaxial test data for asphalt (47) and for unbound materials
(base, subbase, and subgrade) (33) were used to determine the elasticity and
plasticity parameters for the �0-model; they are shown below.

The maximum load of 200 psi (1380 kPa) was applied in increments so as
to simulate the wheel load over a radius of 10.0 inch (25.0 cm). A parametric
study was performed to evaluate the influence of characterizing material
behavior as nonlinear elastoplastic vs. linear elastic.  Accordingly, the follow-
ing combinations were considered (10, 43, 45, 46):

EEEE All four layers linear elastic,
HEEE Pavement nonlinear (HISS-�0), other layers linear elastic,
EHHH Pavement linear elastic, other layers nonlinear (HISS-�0),
HHHH All layers nonlinear (HISS-�0).

Figures 13.25(a) and (b) show vertical, v, and horizontal (radial), u, displace-
ments of the top surface for the final load (� 200 psi) for the four combinations.
The results show satisfactory trends. They also indicate the influence of non-
linear (elastoplastic) material response on the predictions. For example, the

FIGURE 13.24
FE mesh for layered system: 1 in � 2.54 cm, 1 psi � 6.89 kPa.

Material Parameters for Asphalt Pavement System

Parameters Asphalt concrete1 Base2 Subbase2 Subgrade2

# 500000.0 psi 56532.85 17098.56 10013.17
v 0.30 0.33 0.24 0.24
� 0.1294 0.0633 0.0383 0.0296
� 0.00 0.70 0.70 0.70
n 2.40 5.24 4.63 5.26

1.23 � 10�6 2 � 10�8 3.6 � 10�6 1.2 � 10�6

1.944 1.231 0.532 0.778

1Based on tests by Witczak (47).
2Based on tests by Bonaquist (33).


1
�1
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maximum displacements from the plasticity (HHHH) case are about three
times those from the elasticity (EEEE) case. It is believed that the elastoplastic
(HISS) model can provide for realistic evaluation of permanent displace-
ments (rutting) in pavement systems.

Example 13.4:  Reinforced Earth: DSC and Elastoplastic (HISS-d1) Model

Various types of reinforcements such as fibers, nails and geogrids are used to
strengthen compacted soils for different construction systems. They repre-
sent composite systems discussed in Chapter 10. The DSC model with the

FIGURE 13.25
Displacements at top surface (43).
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HISS (�0 
�1) plasticity models were used to characterize the behavior of soil
backfill and interfaces between soil and Tensar (geogrid) reinforcement for an
earth reinforced retaining wall constructed in a highway project in Tucson,
Arizona, USA; a typical wall panel with various measuring instruments is
shown in Fig. 13.26 (48).

The instrumented wall panels had a height of 4.72 m and the wall facing
consisted of 15.24 cm (6.0 in) thick by 3.05 m (10.0 ft) wide precast concrete
panels. The geogrids were laid on compacted backfill to various depths and
were connected to the concrete facing panels at different elevations and
extended to a length of 3.66 m (12 ft). A pavement was installed on the top of
the backfill and consisted of 10.16 cm (4.0 in) base course covered by 24.13 cm
(9.50 in) Portland cement concrete.

Measurements were made over a period of about five years and involved
strains in the geogrid (resistance strain gages), displacement in soil backfill
(inductance coils), forces near the wall (horizontal load cells) and tempera-
ture on the wall (resistance thermometers).

13.11.1 Laboratory Tests

Triaxial (cylindrical: 7.0 � 14.0 cm) and multiaxial (cubical: 10 � 10 � 10 cm)
specimens of the backfill soil were tested under HC and CTC stress paths
(Chapter 7, Fig. 7.13) with different confining pressures �3 � 7.5, 17.5, 35.0,
52.0, 70.0, 140.0, 210.0, 345.0, and 420.0 kPa (49, 50). The index properties of
the backfill soil are: Specific gravity, Gs � 2.64; D30 � 1.00 mm, uniformity co-
efficient, Cu � 3.64, maximum and  minimum void ratios, emax � 0.71 and

FIGURE 13.26
Tensar reinforced retaining wall no. 26-30 (48).
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emin � 0.37. The initial density of soil was about 17.3 kN/m3. Figures 13.27
show typical test data for dry backfill under HC and CTC tests.

Interface shear tests between backfill and Tensar geogrid (16.00 cm diam)
were conducted by using the CYMDOF device (Chapter 11) under different

FIGURE 13.27
Typical stress-strain responses for backfill soil (49, 50).
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normal stresses, �n � 17.5, 35.0, 70.0, 140.0, 210.0, 350.0, 525.0, 700.0, 875.0,
and 1050.0 kPa. Figures 13.28 show typical results for the normal loading,
and shear loading (�n � 35.0 and 875.0 kPa) under displacement controlled
condition.

The test data was used to evaluate parameters for the DSC model for the
soil and interface by using procedures described in Chapters 7 and 11. The
parameters are shown below (49, 50).

Soil

Elastic:  61600 � , and � � 0.3;
Plasticity:  � � 0.12, � � 0.45, n � 2.56;
Hardening: a1 � 3.0 � , �1 � 0.98, " � 0.20;

FIGURE 13.28
Typical stress-strain responses for dry soil — Tensar geogrid interface.

�3
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Disturbance: Du � 0.93, A � 0.368, Z � 1.60;
Unit Weight � 18.84 KN/m3, co-efficient of earth pressure at rest, K0 � 0.40.

Interface

Elastic:  Kn � 29100 � , Ks � 18350 � ;
Plasticity:  � � 2.3, � � 0.0, n � 2.8;
Hardening: a1 � 0.03, �1 � 1.0, " � 0.40

As shown above, the elastic parameters E for soil, and normal and
shear stiffness for interface, were found to be dependent on the confining
pressure, �3, and normal stress, �n, respectively. The DSC model was
used for the soil, while the HISS (�1) nonassociative model was used for
interfaces.

The material parameters for the soil above were obtained from the triaxial
tests with cylindrical specimens. The volume change behavior was not avail-
able from these tests; however, such behavior was available from the multiax-
ial tests for the same soil. Hence, the multiaxial tests were back predicted as
independent tests. Figure 13.29 shows a typical comparisons between predic-
tion and test data in terms of !oct and volumetric strain vs. axial strain for test
with �3 � 7.5 psi (52.0 kPa).

FIGURE 13.29
Comparisons between predictions and multiaxial test data: �3 � 52.0 kPa (49, 50).

�n
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The back predictions for the interface test were obtained by using the finite
element code, DSC-SST2D (10). Figure 13.30 shows the finite element mesh
for the test specimen: soil with 16.0 cm diam. and 4.00 cm height, and inter-
face with 16.0 cm diam. and 0.15 height. The bottom nodes for soil were
restrained in the horizontal and vertical directions, while the side boundaries
were restrained in the horizontal direction. The nodes of the interface zone
were free to move. Typical comparisons between back predictions and test
data for �n � 35.0 and 875.0 kPa are shown in Fig. 13.31.

FIGURE 13.30
FEM mesh for simulation of interface test.

FIGURE 13.31
Comparisons between FE predictions and interface test data.
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13.11.2 Field Validation

The DSC-SST2D code (10) was used to predict the behavior of the Tensar-
reinforced field wall, Fig. 13.26. The analyses were performed for two cases:
Case 1, Fig. 13.32(a), involved a rather coarse mesh with three layers of Tensar
reinforcement with interface elements, while for Case 2, a finer mesh with ten
layers of reinforcement was used; here, bar elements were used for the rein-
forcement, and interface elements were provided on the top and bottom of
the reinforcement, Fig. 13.32(b). In addition, interface elements were also pro-
vided between the soil and wall for both cases.

The material parameters for the soil and interface were given previously.
Parameters for the concrete wall facing and Tensar reinforcement, assumed
to be linear elastic, are given below:

Wall Facing:  E � 2.1 �  kPa, � � 0.15

Reinforcement:   E � 1.5 � 106 kPa.

The analysis involved simulation of excavation and embankment sequences
in which the Tensar reinforcement was placed sequentially on compacted
backfill layers. The traffic load was simulated by applying a load � 20 kPa
on the top surface, after the end of construction. Typical results are given
below.

FIGURE 13.32
Coarse and finer FE meshes for field Tensar reinforced wall (49, 50).
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FIGURE 13.32
(continued).
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Figure 13.33 shows comparisons between back predictions and field data
for vertical soil stress at the elevation 1.53 m (Fig. 13.26) after opening to traf-
fic. These figures also show (the maximum) overburden pressure, �v � �h,
where � is the density and h is the height. It can be seen that both Case 1 and
2 results show good agreement with the field data. The vertical stress near the
wall is lower, partly due to the soil-structure interaction and relative motions
at the interface. At a distance of about 1.52 m from the wall, the stress reaches
maximum value equal to the overburden stress.

Figure 13.34 shows comparisons between the predictions from Case 2 for
the horizontal soil stress in the elements near the inside wall face. It shows
good correlation, while the horizontal stress distribution using the classical
Rankine theory exhibits much higher values compared to the observed

FIGURE 13.33
Comparisons between predicted and observed vertical soil stress at elevation 1.53 m after
opening to traffic.
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results. In other words, the provision of reinforcement reduces the horizontal
stresses (pressure) significantly compared to those from the Rankine theory.

Figures 13.35 (a) and (b) show comparisons between vertical soil strains at
elevation 1.08 after opening to traffic. Figure 13.36 shows (axial) strains in

FIGURE 13.34
Comparisons between predicted and observed horizontal soil stress after opening to traffic: Case 2.

FIGURE 13.35
Comparisons between predicted and observed vertical soil strains at elevation 1.08 m after
opening to traffic.
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the Tensar geogrid at elevation of 1.37 m. It can be seen that the results from
Case 2 with finer mesh, Fig. 13.32(b), show improved agreement with the
observations.

This example illustrates that the DSC
HISS model can provide very good
simulation of the behavior of reinforced (composite) systems, including non-
linear, interface (relative motions) and interaction effects.

Example 13.5:  Borehole Stability: DSC-Elastoplastic (HISS-δδδδ0) Model

Stability of boreholes (drilled) in soils and rocks constitutes an important
problem that requires consideration of various factors such as initial state of
stress, anisotropic character of materials, nonlinear response of geologic
materials and interface/joints, coupled (displacement and fluid pressures)
effects in saturated or partially saturated materials, and multidimensional
geometrics.

One of the specific situations occurs in petroleum engineering when bore-
holes are drilled to great depths in jointed, anisotropic and saturated rock
masses (51-53). Very often, a borehole is kept open during drilling by benton-
ite slurry under pressure. Under increased and high borehole pressure, the
rock mass can experience microcracking leading to hydraulic fracturing. If
for some reason the borehole pressure drops, cracking and failure at the bore-
hole wall can lead to caving-in or breakout of the borehole. These phenomena

FIGURE 13.36
Comparisons between predicted and observed geogrid strains at elevation 1.37 m.
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are influenced by elastic, plastic and creep responses, and microcracking and
fracture due to strain softening or degradation response of the anisotropic
and jointed rock mass.

The unified DSC model is considered to be ideally suitable for the character-
ization of the mechanical behavior of rocks and joints. It has been implemented
in a three-dimensional finite element procedure (42) for coupled response of
saturated media based on Biot’s generalized theory (18,19).

It is difficult to simulate the entire borehole problem involving large depth
and surrounding region by using a computer (finite element) procedure. Very
often, laboratory model tests are performed on finite-sized rock masses sub-
jected to simulated fluid pressure and loading conditions.

The finite element procedure (42) with the DSC model can be used to
predict the behavior of boreholes simulated in the laboratory and field.
Typical three-dimensional finite element mesh for a borehole is shown in
Fig. 13.37. 

The DSC model parameters are obtained from laboratory triaxial tests on
cylindrical specimens of the rock under different confining pressures (53).
The rock was considered to be initially radially anisotropic or transversely

FIGURE 13.37
Finite element mesh for bore hole.
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isotropic; the elastic stress-strain relation is given by (53, 54)

(13.126)

where E1 and E2 are elastic moduli, G12 is the shear modulus, and �12 and �23

are the Poisson’s ratios. These elastic parameters were expressed as func-
tions of the mean pressure, p � �3 � J1/3, where �3 � confining stress and
J1 � �1 � �2 � �3:

(13.127)

The parameters for the HISS-�0 plasticity model used are given below.

� � 5.80, � � 0.60, n � 4.84,
R � 67.0 psi (460 kPa),
a1 � 1.14 � , �1 � 2.56.

In order to allow for failure condition at low mean pressures, the yield func-
tion in the HISS-�0 model (Chapter 7) was modified as

(13.128)

where the exponent, q, allows for the nonlinearity of the ultimate yield func-
tion (55); the value of (q) was found to be 1.4. Figure 13.38(a) shows the
curved ultimate envelopes, Eq. (13.128) for tests with loading in the parallel
and normal directions. Figure 13.38(b) shows the plot of D vs. �D.
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FIGURE 13.38
Nonlinear ultimate envelope and disturbance.
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In the DSC model, the response of the fully adjusted part was characterized
by using the following equation:

(13.129)

where c denotes FA (critical) state. The parameter m was found to be 0.28.
The disturbance parameters, Eq. (3.16), used are as follows:

A � 74 � 104

Z � 2.265
Du � 0.999.

Figure 13.38b shows a plot of disturbance vs. �D.

13.11.3 Computer Results

The 3-D finite element mesh is shown in Fig. 13.37. Figure 13.39 shows pre-
dicted E-W and N-S displacements with the pressure applied on the bore-
hole. These results show consistent trends as observed in laboratory tests.
The predictions of the pressure at the breakout, when large displacements
occur, are considered to be realistic.

The growth of disturbance in element E, Fig. 13.37, in the E-W direction is
also plotted in Fig. 13.39. It shows that the critical disturbance, Dc ≈ 0.80, is
reached between pressures of 3000 to 3500 psi (21 to 24 MPa). Thus, the insta-
bility and breakout can be identified in the finite element analysis based on
the critical disturbance derived from laboratory tests.

FIGURE 13.38
(continued).
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FIGURE 13.39
Predicted displacements and disturbance for borehole: 1 inch � 2.54 cm, 1 psi � 6.89 kPa.
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Example 13.6: Viscoplastic Model: Cylinder (Tunnel) with Internal Pressure

Figure 13.40 shows the finite element mesh for a thick cylinder (tunnel), idealized
as plane strain; because of the symmetry, only a quarter of the cylinder is dis-
cretized (56). The internal diameter of the cylinder is 100 mm, with wall thickness
� 100 mm. It is subjected to internal pressure, P, equal to 14 N
mm2. The material
parameters for the viscoplastic (�0-HISS) model (10) and those used by Owen
and Hinton (17) in their viscoplastic (von Mises) model are given below:

Elastic: E � 2.10 � 103 N
mm2, � � 0.3;
von Mises:  �y (yield stress) � 2.40 N
mm2,

FIGURE 13.40
Mesh for elastoviscoplastic problem (17) (with permission).
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H� (strain hardening parameter) � 0.00;
HISS-�0: � � 0.05, � � 0.62, n � 3.9,

a1 � , �1 � 0.47, R � 2.0 N
mm2;
Creep:  � � 0.01 1
day, N � 1.00.

Time Integration (Chapter 8):

Factor for graded time � 0.05
Steppping time increment factor � 1.50

  Time integration parameter, � � 0.0.

Figure 13.41(a) shows radial (x) displacement with time for node 1,
obtained by using the viscoplastic (von Mises) model. The displacement con-
verges to the value of 0.13997, which compares well with that of 0.13959
reported by Owen and Hinton (17). Figure 13.41(b) shows the radial (x) dis-
placement for node 1 with time obtained by using the viscoplastic (HISS-�0)
model. The converged value of displacement of 0.160 mm is somewhat
higher than that from the von Mises model, Fig. 13.41(a). The difference can
be due to the fact that in the HISS-�0 model, plastic yielding is incorporated
from the beginning of loading.

Viscoplastic Model: Creeping Natural Slope. Natural slopes often
exhibit continuous movements under gravity load, which are influenced by
creep or viscous response of (geologic) materials in the slopes and the inter-
face zone between the slope (solid body), and parent rock mass. Finite ele-
ment analysis and comparisons between predictions and field observation in
a natural slope at Villarbeney, Switzerland, are presented in (57–59).

Example 13.7:  Layered Pavement System: DSC Model, Microcracking
and Fracture

Figure 13.42 shows the finite element mesh for a two-layered system with 4.0
in (10.0 cm) thickness of pavement over a 42 in (107 cm) thick base (60). It was
idealized as axisymmetric. Two analyses were performed: (1) without initial
crack and (2) with an initial vertical crack (starting from the surface) of depth
0.5 inch (1.27 cm) and thickness of 0.05 inch (0.127 cm) at the end of the circu-
lar loaded area of 12.0 inch (30 cm) radius (10). The load was applied in (vari-
able) increments [4 at 50 psi (350 kPa), 10 at 20 psi (140 kPa) and the
remainder at 10 psi (70 kPa)] until failure, when the displacements became
excessive (10, 45, 46).

The material in the pavement was characterized by using the DSC model
that allows for elastoplastic response with disturbance (damage) leading to
microcracking and fracture.  The base material was characterized by using
the elastoplastic HISS-�0 model. The material parameters are shown below.
The crack region was assumed to be linear elastic with a very low value (100

10 9�
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psi � 0.69 MPa) of the elastic modulus (E).  Before the load was applied, in
situ stresses due to the (overburden) weight were computed and included in
the analysis using the unit weights and K0 values shown below.

Figure 13.43 shows the computed load displacement curves from the no-
crack and crack analyses; it shows that the system with the crack is less stiff
compared to that without a crack, and that the initiation of yielding and
microcracking occurred at lower load in the case of the crack.

FIGURE 13.41
Radial displacement vs. time: viscoplastic model.
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Computed distributions and contours of disturbance (in a part of the pave-
ment, near the applied load) at different load levels for the two cases (no
crack and with crack) were analyzed. For the case without an initial crack,
critical disturbance Dc � 0.80 indicating initiation of fracture occurs at the
interface between the pavement and the base (under the load), at the load

FIGURE 13.42
Typical mesh for layered pavement (1.0 inch � 2.54 cm).

Material Parameters.

Parameter

Material 1: 
Pavement
(Concrete)

Material 2: 
Base Crack

Elastic

E psi (MPa) 3 � (20684) 3 � (2068) 100 (0.69)
v 0.25 0.24 0.24

Plasticity (HISS-�0) model

� 0.0678 0.030
� 0.755 0.700
n 5.24 5.26
a1 4.61 � 1.20 �

0.826 0.778
R, psi (MPa) 8122 (56) 28.88 (0.20)
A 668
Z 1.502
Du 0.875

In situ stress

Unit weight lb
in.3

(kg
 )
0.087 (2325) 0.064 (1771)

Co-efficient of 
lateral Earth 
pressure, Ko

0.20 0.70

106 105

10 11� 10 6�

�1

m3
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level of about 480 psi (3.30 MPa). At about 550 psi (3.80 MPa) load, Dc � 0.80
is exceeded in almost all of the pavement under the load. In the case of the
initial crack, the critical disturbance Dc � 0.80 is indicated at the interface,
and in the upper part (near the surface) of the cracked region at about 450 psi
(3.10 MPa) load.  As the load increases, the extent of zones with D � 0.8
increases, and at about 490 psi (3.38 MPa) load, the entire pavement (below
the load) experiences microcracking and fracture.

The above results show the capability of the DSC model for predicting
microcracking and growth of fracture (in a layered system).  Note that the
nonlinear FE with the DSC allows for the identification of the initiation and
growth of cracking, without the need for the introduction of linear fracture
mechanics based  crack intensity factors, and it avoids the need for the a priori
assumption of the location and geometry of the crack. In other words, the
DSC identifies cracking and its propagation at locations dictated by the
nature of the problem (geometry, loading, boundary conditions, etc.)

Example 13.8:  Chip Substrate 313-PIN PBGA: DSC Model, 
Thermomechanical Cyclic Fatigue Failure

The DSC model has been used to characterize the thermomechanical behav-
ior of joining materials (e.g., solders) in chip-substrate systems in electronic
packaging. The computer finite element codes with the DSC model have
been used to analyze thermomechanical response of a number of chip-sub-
strate systems: leadless ceramic chip carrier (LCCC) (7, 8, 14), ceramic ball

FIGURE 13.43
Computed load displacement curves.
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grid array (CBGA) (61, 62), plastic ball grid array (PBGA) (63–66) and thin
small outline package (TSOP) (9). The computer predictions for these prob-
lems compared very well with laboratory test responses in terms of distur-
bance (damage), microcracking and fracture, and cycles to failure. Two
typical problems are presented here; 313-Pin PBGA in this example and the
CBGA in the next example.

Figure 13.44 shows the 313-PIN plastic ball grid array (PBGA) manufactured
by AMKOR–ANAM, which is 35.0 mm square and 2.33 mm high. The solder
ball diameter varies from 0.60 to 0.90 mm with the spacing of 1.27 mm. The
PBGA package was tested in the laboratory under thermal cycles of loading at
the Jet Propulsion Lab (JPL) (67). The PBGA module consisted of bimaleimide
triazine (BT) epoxy glass laminate, mold compound, silicon chip, bond wires
and micro solder balls. It is mounted on a printed wire board (PWB) composed
of FR-4 glass
epoxy laminated with copper traces or planes (63).

The analysis was performed in two stages: macro and micro. In the macro
model, the package was idealized as three-dimensional with linear elastic
properties, Fig. 13.45; the PBGA and PWB were divided in 144, 4-node plane
strain plate elements each, and were connected by 84-bar elements to represent
the solder joints in the quarter of the system. The thicknesses used correspond

FIGURE 13.44
313-PBGA package (63, 67).

FIGURE 13.45
PBGA PWB solder joint NASTRAN model (63).
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to the photomicrographs of the test hardware (63, 64). Other details such as
boundary conditions and loading are given by Zwick and Desai (63, 64). The
macro model provided displacements at each nodal point and stresses in
each element. The highest displacements occurred in the solder joint farthest
from the neutral point (package center) at temperature � �55�C.

Figure 13.46(a) shows the temperature and displacement cycles with the
highest magnitude applied for the analysis of a single ball joint, Fig. 13.46(b),
in the micro model. The material parameters for the Pb-Sn solder are given
below (14, 63, 64). They were determined on the basis of test data on Pb
Sn
(40
60) solders reported in (68–71). At this time, the analysis involved elasto-
plastic disturbance model, i.e., creep effects, are not considered.

The finite element analysis was performed for about 4000 cycles. Figure 13.47(a)
shows the computed values of stresses �x, �y and !xy in the top left corner element,
up to 2000 cycles. Cyclic degradation is evident in this figure. Figure 13.47(b)
shows the growth of disturbance with cycles (N). Figure 13.48 shows the con-
tours of disturbance at typical cycles N � 2500 and 2700 cycles.

Different values of design disturbance (Dcm), when microcracking is
considered to initiate, can be specified for specific design needs. For
instance, if Dcm � 0.50, the critical value (Dcm � 0.5) occurred in the solder
after about 500 cycles, Fig. 13.49. Then it grew with cycles, and after about
3000 cycles (to failure, Nf), about 90% of the solder volume had experi-
enced D � 0.50, Fig. 13.49, which can be considered to represent fatigue
failure. Alternatively, Dcm � Dc � 0.85, which represents the critical value
from laboratory tests (8, 14, 63), when significant fracture occurs as a con-
sequence of the coalescence of microcracks, can be adopted as the design
criterion. It occurred for the first time after about 2000 cycles; then about
10% of the solder volume reached D � 0.85 after about 2800 cycles (Nf),

Parameters for 63 Sn
37 Pb Solder (63)

Parameter P300 c(*)

Elasticity
E 15.7 GPa �4.1
� 0.40 0.0

Plasticity
� 0.00081 �0.1579
a1 0.78E-05 0.00
η1 0.46 0.23
n 2.10 0
R 208.0 MPa �5.34

Disturbance
A 0.102 1.55
Z 0.676 0
Du 0.85 —

(*)Temperature effects are included by expressing any
parameter, P, as in Eq. (13.54).
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Fig. 13.49, which can be considered to be failure. Thus, cycles to failure
(Nf) can be found based on a given design criterion on the disturbance, D.
Figure 13.49 shows that the foregoing values of cycles to failure compare
well with those observed in the laboratory tests on the four PBGA 313-PIN
packages (67).

FIGURE 13.46
Displacement and temperature loading cycles and single ball micro model (63).
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Inclusion of creep behavior with elastoplastic disturbance model can pro-
vide improved results. Also, the computer code can be used to perform para-
metric studies in which the material properties, geometry, ball spacing, etc.,
can be varied, leading to computation of cycles to failure and reliability, and
design optimization (72).

Example 13.9:  Chip Substrate CBGA Package: DSC Model, 
Thermomechanical Cyclic Fatigue Failure

Figure 13.50 shows a ceramic ball grid array (CBGA) package tested in the lab-
oratory by Guo et al. (73). It is used in the IBM 604 power PC chip and is com-
posed of either alumina or aluminum nitride (ALN), which encases a

FIGURE 13.47
Stress variation and disturbance with cycles (63).
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controlled collapsible chip connection (C-4) silicon chip. The solder balls in
the CBGA-SBC (solder ball connect) package were composed of 90 
10
(Pb
Sn) with 63
37 (Pb
Sn) solder fillers.  Details are given in (73, 74).

The material properties for the chip, printed wire board (PWB) and the
joining solder with 63% Pb-37% Sn and 90% Pb-10% Sn were determined on

FIGURE 13.48
Contours of disturbance at cycles N � 2500 and 2750 (63).

FIGURE 13.49
Disturbance and fractional volume vs. cycles and comparison with test data (63).

FIGURE 13.50
Test vehicle for CBGA in simulated laboratory test (61).
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the basis of laboratory tests and other data available in (75–77). These param-
eters are given below (61).

The solder materials were characterized by using the DSC with elastoplas-
tic �0-model for the RI behavior; the FA response was assumed to be hydro-
static. The chip and PWB material were assumed to be linear elastic. A series
of tension and compression tests were performed on ALN so as to determine
its elastic constants (8, 61).

The finite element analyses were performed by considering three different
ball spacings, 1.00, 1.27, and 1.50 mm; they involved two steps: macro and
micro. In the macro level, half of the structure was idealized as plane strain;
Figure 13.51 shows the FE mesh with 4-node isoparametric elements for the
case of 1.27 mm spacing. The mesh consisted of 360 nodes and 304 elements.
In the macro model, a thermal cycle, Fig. 13.52(a), was applied and the criti-
cally strained solder ball was identified. Figure 13.52(b) shows displacement
cycles with computed (critical) amplitudes of axial and shear displacements
that were applied in the analysis of the single ball for the micro level calcula-
tions. Figure 13.53 depicts the finite element mesh for the single ball.

Figure 13.54 shows the computed axial (normal) and shear displacements
for different ball spacings, together with the experimental data (73) and
another finite element analysis for the same package reported by Corbin (74).

Material Parameters

63% Pb-37% Sn 90% Pb-10% Sn 
Parameter P300 c P300 c

Elasticity
E 15.7 GPa �4.1 9.29 GPa �1.92
� 0.40 0.0 0.40 0.0

Plasticity
� 0.00081 �0.158 0.000822 �0.16
a1 0.78 � 0.00 1.10 � 10�5 �0.61
�1 0.46 0.23 0.44 0.24
n 2.10 0.00 2.10 0.00
R 208.0 MPA �5.34 122.0 MPA �1.67

Disturbance
A 0.102 1.55 4.07 0.00
Z 0.676 0.0 1.95 0.00
Du 0.90 0.0 0.90 0.00

Ceramic
Module

E 318 GPa
� 0.23

r 7.0 � 
�C

PWB (FR-4)
E 11.0 GPa
� 0.28

r 20 � 
�C

Here, P300 and c are parameters in Eq. (13.54)

10 5�

10 6�

10 6�
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The present results show satisfactory correlation with the test data and
Corbin’s analysis. A part of the difference can be attributed to the fact that the
size of the module analyzed here is smaller than that used by Corbin (74) and
in the testing. Also, in the present analysis, the structure analyzed was 21 �
21 mm, while Corbin considered a 25 � 25 mm SBC module (8, 61). In the
present analysis, a two-dimensional plain strain idealization was used, while
Corbin considered a three-dimensional idealization. Furthermore, the molyb-
denum and copper pads at the top and bottom of the ball were not included in
the present analysis; this was done as a simplification, and because failure usu-
ally initiates in the filler, not in the pads.

Disturbance (microcracking leading to fracture) growth and its localization
with thermal cycles were computed for the three ball spacings. Figure 13.53

FIGURE 13.51
Typical finite element mesh for ball spacing � 1.27 mm (61).

FIGURE 13.52
Thermal cycles and applied displacements: from macromodel applied to micromodel for
ball spacing � 1.27 mm (8,61). ©1998 IEEE.
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shows typical distributions of computed disturbance for the ball spacing of
1.27 mm at cycles N � 100, 500 and Nf � 873; here, Nf denotes failure cycle,
which corresponded to the critical disturbance, Dc � 0.90. Figure 13.53
shows that at Nf � 873, the growth of D � 0.90 has extended to the major part
of the package, for about 80 to 90% of the width of the ball. This can be con-
sidered to represent failure, as the finite crack for about 80 to 90% of the
width could lead to failure of the electrical connection. The distributions of
disturbance, which represent accumulated plastic strains in Fig. 13.53, com-
pare well with those reported from interferometry results (73) and the finite
element analysis (74).

FIGURE 13.53
Finite element mesh and distribution of disturbance in solder ball for 1.27 at different thermal
cycles, N (8, 61). ©1998 IEEE.
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Figure 13.55 shows a plot of the number of cycles to failure, Nf, vs. the via
spacing. It can be seen that the values of Nf decrease as the spacing increases.
In other words, a package with a smaller ball spacing can sustain a greater
number of thermal and mechanical cycles. The DSC model and computer
procedure can thus also allow design optimization and evaluation of reliabil-
ity under variations of factors such as ball spacing, material properties,
geometry and loading cycles (rate, dwell, etc.) (72).

Example 13.10:  Cyclic Hardening, Repetitive Loading, HISS Plasticity
(�0) Model

Figure 13.56 shows the finite element mesh with four 8-noded elements. The
top surface was subjected to cyclic or repetitive pressure loading with the
amplitude of 50.0 MPa, increased in twenty increments and then decreased

FIGURE 13.54
Computed displacements and comparisons with previous FE analysis (74) and test data
(73). ©1993 by IBM Corp., reprinted with permission.
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to zero in twenty decrements. Five such cycles were applied in the present
analysis (10, 56). The material parameters used are given below:

Elastic: E � 37000 MPa, � � 0.25;
Plasticity (HISS-�0) Model: � � 0.06784, � � 0.755, n � 5.24;

a1 � 0.4614 � , �1 � 0.826, 

 3R = 56.64 MPa
For the nonlinear unloading, Fig. 13.14,  � 50,000 MPa and  � 35,000
MPa were used. The values of the cyclic hardening parameter, hc, Eq.
(13.105a), were adopted as 0.00 and 1.00.

Three cases were analyzed:  (1) hc � 0.00 indicating no cyclic hardening
and with linear unloading, (2) hc � 1.00 indicating cyclic hardening and with
linear unloading, and (3) hc � 1.0 indicating cyclic hardening and with linear
unloading, Fig. 13.14.

Figure 13.57 shows computed results for the three cases in terms of axial
stress (�y) versus axial strain (�y) for the five cycles. Figure 13.57(a) shows that
there is no cyclic hardening, as the plastic strains for all cycles are the same.
The results for cases 2 and 3, Fig. 13.57(b) and (c), show that the plastic strains
decrease with increasing cycles. However, Case 3 can allow the effect of non-
linear unloading on the observed behavior of some materials.

FIGURE 13.55
Plot of the number of cycles to failure vs. via spacing for three ball spacings (8, 61). ©1998
IEEE.
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Example 13.11:  Pile in Clay under Cyclic Loading: DSC Model

Interaction and coupled response between structures and geologic materials
play an important role in the behavior of structure-foundation systems. The
behavior is complex and affected by many factors such as nonlinear
response of soils and interfaces, type of loading and sequences of construc-
tion. The finite element procedure with the DSC model was used to predict
the field behavior of an instrumented axially loaded pile in saturated marine
clay (23–25, 78–82).

The pile load tests were performed by Earth Technology Corporation (78) at
Sabine, Texas, with pile segments of diameter 4.37 cm and 7.62 cm. Typical
analysis for the 7.62 cm pile is presented below. The field conditions including
in situ stresses and sequences—pile driving, consolidation, tension (one-way)
tests and cyclic two-way loading—were simulated. The in situ stresses, before
the pile was driven, were computed by using the coefficient of lateral earth
pressure, Ko � 0.786 (23). The driving stresses and pore water pressures were
evaluated by using the strain path method (SPM) (23, 79, 83). The driving
stresses and pore water pressures were introduced as “initial” conditions for

FIGURE 13.56
Four-element mesh and repeated loading.
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FIGURE 13.57
Computed cycles stress, �y vs. strain, .�y
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the next stage. Time-dependent deformations (consolidation) after the driv-
ing were evaluated by using the FE procedure (25). The cyclic two-way load-
ing was then simulated as it was done in the field.

Laboratory triaxial (cylindrical specimens, 7.0 � 15.0 cm) and multiaxial
(cubical specimens, 10.0 � 10.0 cm) tests were performed on the clay speci-
mens obtained from the field (80). Interface tests between the clay and pile
(steel) were conducted by using the CYMDOF device described in Chapter 11
(81). These tests were used to find the DSC model parameters for loading,
unloading and reloading; they are listed below.

Figure 13.58(a) shows the finite element mesh for the pile segment and the
surrounding soil; Fig. 13.58(b) shows the applied displacement history at the
pile nodes (78). Figure 13.59 shows the comparison for consolidation behav-
ior and the growth of disturbance during the consolidation. Here, the HISS

Material Parameters Used for Finite Element Analyses (24, 82)

Clay Interface

Relative intact state
E 10350 kPa 4300 kPa
� 0.35 0.42
� 0.047 0.08
� 0.0 0
n 2.8 2.6
3R 0.0 0.0

Eq. (7.11b)

0.0001 0.000408
0.78 2.95

0.0 0.02
0.0 0.08

Critical state
� 0.1692 0.3

0.9 1.36
 0.07 0.12

Disturbance function
Du 0.75 1.0
A 1.73 0.82
Z 0.31 0.42

Unloading and 
reloading:

34500 kPa 4300 kPa
3450 kPa 400 kPa

0.005 0.03
Other parameters
Permeability, k 2.39 �  m 
sec 2.39 �  m 
sec
Density of soils, �s 2.65 mg 
 2.65 mg 


Bulk modulus of soil 
grain, Ks

 kPa  kPa

Bulk modulus of water, Kf  kPa  kPa
Density of water, �f 1.0 mg 
 1.0 mg 


©John Wiley & Sons Ltd. Reproduced with permission.
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 indicates calculations based on previous anisotropic hardening HISS
plasticity model (23, 79). Figures 13.60(a) and (b) show comparisons between
the predicted responses using the DSC and HISS  model and the field
data for shear transfer at the pile interface vs. displacement and time during
the one-way cyclic loading, respectively. The pore water pressure and the
growth of disturbance vs. time during the one-way cyclic loading are shown
in Figs. 13.60(c) and (d), respectively. The results for the cyclic two-way load-

FIGURE 13.58
Finite element mesh of field pile test and displacement history (24, 82). ©John Wiley & Sons
Ltd. Reproduced with permission.

�0
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ings in terms of shear transfer vs. displacement, shear transfer vs. time, pore
water pressures and growth of disturbance vs. time are shown in Figs.
13.61(a)–(d), respectively.

It can be seen that the DSC predictions correlate very well with field observa-
tions. Also, the DSC model, which allows for cyclic (disturbance) degradation,
provides improved predictions compared to those from the HISS-plasticity
model.

Example 13.12:  Dynamic Analysis and Liquefaction in Shake Table Test:
DSC Model

Behavior of structure foundation systems subjected to dynamic (earth-
quake) loading is affected, among other factors, by interaction effects due
to relative interface motions. In the case of saturated granular (sandy)
materials with certain initial densities, dynamic loading can cause micro-
structural instability or liquefaction (Chapter 9). Applications of computer
procedures with the DSC model are given in (84–88). The DSC parameters
for the Ottawa sand and sand-concrete (steel) interfaces were obtained
from cyclic triaxial and multiaxial (84, 85, 88, 89) and shear tests (90),
respectively. Here, we present dynamic and liquefaction analysis of a
shake table test (91).

FIGURE 13.59
Comparisons between field consolidation behavior and predicted results from HISS and
DSC models (24, 82). ©John Wiley & Sons Ltd. Reproduced with permission.
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The finite element procedure with the DSC model was used to predict
the dynamic behavior in shake table tests reported by Akiyoshi et al. (91).
Figure 13.62(a) shows the shake table test set-up with location of instruments.
The saturated sand was Fuji River sand with total density, �t � 19.8 KN
m3.
Here, the properties of the Ottawa sand with �t � 19.63 KN
m3 were used as
an approximation; the rationale for the approximation is given in (85).

The finite element mesh used is shown in Fig. 13.62(b). The mesh contained
160 elements and 190 nodes with 120 elements for the soil and 40 elements for
the steel box. The concept of repeating side boundaries was used (21, 92);
accordingly, the displacement of the side boundary nodes on the same horizon-
tal plane was assumed to be the same. The bottom boundary was restrained in
the vertical direction, while it was free to move in the horizontal direction.

The applied loading involved horizontal displacement, X, at the bottom
nodes, given by the following function:

(13.130)

where  is amplitude (� 0.0013 m), f is the frequency (� 5.0 HZ) and t is the
time. The analysis was carried out for 50 cycles with time step �t � 0.001

FIGURE 13.60
Comparisons between field measurements and predictions from DSC and HISS models:
one-way cyclic load test (24, 82). ©John Wiley & Sons Ltd. Reproduced with permission.

X x 2%f t( )sin�

x

© 2001 By CRC Press LLC



sec (from time 0.0 to 2.0 secs), and �t � 0.05 sec (from time 2.0 to 10.0
secs).

Figure 13.63 shows comparisons between the measured and predicted excess
pore water pressures with time at the (dark) point in the box at depth � 300 mm
from the top, Fig. 13.62(b). The test results indicate liquefaction after about 2.0
secs when the pore water pressure equaled the initial effective stress. The finite
element predictions also show liquefaction after about 2.0 secs.

Figures 13.64(a) to (d) show contours and growth of disturbance in the
mesh at typical times = 0.50, 1.0, 2.0, and 10.0 secs. The computed plot of
the growth of disturbance at depth � 300 mm is shown in Fig. 13.64(e).
Laboratory tests on the Ottawa sand showed that liquefaction initiated at
average critical disturbance, Dc � 0.84 (87). At time � 0.50 sec, the distur-
bance was below the critical value in all elements. At t � 1.0 sec, the distur-
bance had grown and its value was greater than 0.70 in the middle zone,
including depth � 300 mm. At time of 2.0 secs, the disturbance had reached
the value of about 0.80 in the zone above depth � 300 mm, while its value

FIGURE 13.60
(continued).
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was greater than 0.80 in the lower middle zone, indicating that liquefaction
had initiated at about 2.0 secs. At time � 10.0 secs, the disturbance has grown
to the value of about 0.90 in about 80% of the test box, indicating that the soil
in the test box has liquefied and failed. These trends are considered to be con-
sistent with the observed behavior.

13.12 Computer Codes

A number of computer codes with the DSC model have been developed and
are used to solve the problems in this chapter. Some of the codes are
described in various publications, e.g., DSC-SST2D (10), DSC-DYN2D (25)
and DSC-SST3D (42). These codes can be acquired by writing to the author.

FIGURE 13.61
Comparisons between field measurements and predictions from DSC and HISS models:
two-way cyclic load test (24, 82). ©John Wiley & Sons Ltd. Reproduced with permission.
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Conclusions and Future Trends

 

The disturbed state concept (DSC) is considered to be a unified and powerful
approach for constitutive modeling of engineering materials, and interfaces
and joints. It can be applied to characterize the thermomechanical behavior
of a wide range of materials, geologic, concrete, metals, ceramics, alloys
(solder), silicon, and reinforced or structured systems. The inherent idea in
the DSC is based on a 

 

holistic

 

 consideration of the material’s response to
external influences (loads); the concept has been shown to have roots in
philosophical and mechanistic viewpoints of the behavior of matter.

One of the important attributes of the DSC is that it provides a hierarchical
framework, which permits the user to adopt a specialized version(s) for a
specific material. Once a version is chosen, it is necessary to determine and
use only the parameters relevant to that version. As a result, the DSC models
are simpler, involve lower number of parameters compared to other available
models of comparable capabilities, and can be implemented easily in solution
(computer) procedures.

We have presented details of the theoretical and mathematical aspects of the
DSC, including comparisons with other available models. The DSC and its
specialized versions have been calibrated with respect to laboratory test data
for a number of materials, interfaces and joints. We have presented parame-
ters for many materials and interfaces, and have validated the models with
respect to tests used to find them, and also independent tests 

 

not

 

 used in the
calibration.

Details of the implementation of the DSC models in nonlinear, two- and
three-dimensional computer procedures are presented. The computer codes
are used to predict the actual behavior of simulated laboratory and field (prac-
tical) boundary value problems. The DSC-models are found to provide highly
satisfactory predictions of the actual behavior.

Overall, we can conclude that the DSC provides a new and alternative
approach for characterizing the mechanical behavior of materials and inter-
faces. It goes a step beyond the conventional continuum theories and models
available within mechanics of materials.

The DSC represents a direction toward a unified theory for mechanics of
materials and interfaces. Indeed, future work will be required for many issues
such as additional analysis for mathematical characteristics, application to
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materials other than those included in the book, development of appropriate
and advanced test devices and their use toward determination of parameters
and validation of the actual behavior of problems in the field.

Appropriate and rational characterization of materials are vital for the solu-
tion of existing and emerging technological problems. This need will become
more and more important for new and complex materials, particularly with
the increased miniaturization of engineering systems. Hence, the pursuit of
the development of new, alternative and unified concepts will continue. 
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APPENDIX I:  Disturbed State, Critical State 
and Self Organized Criticality Concepts

We present a review, analysis and comparison between the disturbed state
concept (DSC), critical state concept (CSC), and self-organized criticality
(SOC) in the context of the mechanical behavior of engineering materials and
interfaces/joints.

The DSC is based on the idea that a deforming material (interface) experi-
ences natural self-adjustment (NSA) in its internal microstructure; natural
implies that the material possesses the potential to adjust itself to external
influences. During this process, the particles in the microstructure experience
relative motions, e.g., sliding, rotation, and separation. The nature of defor-
mation and particle motions will depend on factors such as initial stress and
flaws, homogeneity, heterogeneity, density (loose or dense), and loading.

We arbitrarily divide materials in two categories or types. A normally fab-
ricated or deposited material that is subjected to monotonically increasing
loads is termed as Type I material and involves relatively homogeneous com-
position without significant flaws or preferred particle orientations. A nor-
mally consolidated (NC) soil, a granular material in loose state and a metal
with relatively homogeneous composition are examples of Type I material.
Materials (Type II) that have experienced prior histories such as unloading,
and thermal and chemical loading, may exhibit relatively heterogeneous
composition and brittle response. A material with preferred particle orienta-
tions and flaws, and an over-consolidated (OC) soil are examples of Type II
material.

Both material types, in general, exhibit nonlinear response with irreversible
(plastic) deformations and dissipation of energy. However, the mechanisms
of deformation in the two would be different. Figure I.1 shows schematics of
their behavior. In the case of Type I material, relative particle motions would
cause continuous deformations and gradual breaking of weak bonds leading
to breakdown under (infinitesimal) increase in strain or stress. The response
would tend toward the FA or critical state; however, before it is reached, fail-
ure or breakdown will occur in the engineering sense. It is possible that the
particle motions would cause “cracks” or “dislocations” with sizes below the
microlevel; however, such cracks would coalesce to form major cracks or
shear bonds essentially in the vicinity of the maximum or peak stress when
catastrophic failure would take place.

In the case of Type II materials, the behavior may be initially similar to that
for the Type I material. After a certain stress level (disturbance Dm), however,
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microcracks would initiate. They could grow and become macrocracks, and
after the peak (Dp) and at Dc, initiation of collapse or instability would occur.
Continuing deformations beyond Dc would lead to “finite"-sized cracks and
subsequent collapse or failure at Df.

As the cracks form and grow with bifurcations, Fig. I.1, bursts of energy
loss would occur. In the case of Type I material, such energy bursts and cor-
responding acoustic emissions (AE) or noise may be difficult to identify and
measure at crack sizes below the microlevel. However, in the case of Type II
material, it would be possible, with available engineering equipment, to mea-
sure AE at the crack initiation and growth, and define corresponding dissi-
pated energy. The growth and coalescence of cracks would also cause
measurable (AE) signals or noise.

A “homogeneous” or Type I material at relatively low (initial) density or in
loose condition would compact continuously under compressive loading.
Under tensile loading, continuous and gradual breaking of weak bonds would
lead to the final breakdown. As a result, the motions of particles, Fig. I.2, may
not involve any “sudden” changes or noise. Only at a high (critical) loading,
failure or collapse will be caused due to sliding along shear planes. At this
state, there can occur “sudden” and significant noise, which can be defined by
measuring quantities such as acoustic emissions (AE) in the material (speci-
men). This situation would imply that before and after the peak or failure
stress, the number of AE will be small without noticeable noise in the acoustic
signals. At the same time, there can occur plastic or irreversible deformations

FIGURE I.1
Schematic of material responses.
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and dissipation of energy during the deformation process. One of the conse-
quences of “continuous” irreversible deformations is the phenomenon of con-
tinuous yielding, which can lead to the critical state (Chapter 7).

A deforming heterogeneous or brittle material of Type II, on the other
hand, develops microcracks or microfractures, which can nucleate and grow
into clusters, and coalesce to form macrofractures. During this process, the
material experiences irreversible deformations, and dissipation or release of
seismic (acoustic) energy. As a consequence, redistribution of stresses that
cannot be carried by the fractures (or failed parts) to the material parts in the
intact state can take place. The process of microcracking can initiate some-
where before or at the peak stress, Fig. I.3. The occurrence of the release of
seismic energy or seismic events can be measured as AE counts, and can
exhibit noisy signals with different frequencies, Fig. I.3.

The NSA in the DSC implies bringing material particles or parts to a more
effective relative configuration so as to optimally respond to external forces

FIGURE I.2
Schematic of compactive and AE responses for relatively homogeneous (Type I) materials.
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or influences. The process of self-adjustment results in the evolution or
growth of the material’s microstructure involving plastic yielding and
microfracturing, or a combination of both, depending upon the nature of the
composition and type of the material. The plastic yielding may not entail a
process that causes sudden bursts of microcracks and energy, which can be
termed as a relatively quiet phenomenon. On the other hand, microcracking
(in a brittle material) may entail bursts of microcracks and energy, which can
be termed as a noisy or turbulent phenomenon.

The behavior of both the above types of materials, homogeneous, and
heterogeneous, involving growth and evolution of yielding or microfrac-
turing, can be explained on the basis of the NSA approach. As it will be dis-
cussed later, the SOC can explain the response of brittle materials involving

FIGURE I.3
Schematic of compactive-dilative, microfracturing and AE responses for relatively hetero-
geneous brittle (Type II) materials.
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microfracturing and noisy signals (e.g., flicker or 1�f noise). CSC and SOC
mainly explain the phenomenon at the (final) critical state when avalanches
and collapse (of the material’s microstructure) initiate, e.g., Dc, Fig. I.3. On the
other hand, the DSC can explain the entire deformation behavior including
prepeak, postpeak, and critical or collapse. In other words, the DSC is consid-
ered to be general, as it can include the states defined by the CSC and SOC as
special cases.

Self-Organized Criticality

Bak and coworkers (1–4) have proposed the self-organized criticality (SOC)
concept. It is based on the idea that a large complex system such as a granular
material containing many particles (components), under external influences,
can evolve into a poised or critical state; its response is affected by past history
and events. At the critical state (increasing) minor disturbances can lead to
catastrophic events similar to those at the collapse or limiting critical state,
called avalanches, of different sizes. Evolution of such a system to the critical
state results as a consequence of the interactions between the constituents of
the system. It was shown that a wide range of phenomena can be described
on the basis of the SOC, e.g., behavior of a sand pile, occurrence of earth-
quakes, price variation of commodities, evolution and extinction of biologi-
cal species, growth of cites, light from quasars and fluctuation of flow in
rivers (4).

The SOC is often illustrated by using the behavior of a sand pile, Fig. I.4 (4).
To start with, the sand pile is relatively flat and stable, and when sand grains
are added, they remain at the locations where they land. As sand grains are

FIGURE I.4
Sandpile behavior (SOC).
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further added, the pile becomes steeper with an increase in the sliding of
grains over the steep surfaces. At the critical (stage) slope, sliding can occur
over almost all of the pile, when the behavior of the sand pile is out of balance,
and catastrophic sliding events or avalanches can take place. Such events
cannot be understood in terms of the behavior of individual grains (compo-
nents). In other words, in the behavior of avalanches, the coupling or itera-
tion between the response of grains plays a vital role; thus, the behavior can
be understood or defined only on the basis of unified or holistic consider-
ations. Bak and Tang (2) have noted that the behavior of a complex material
system may not be explained based on the response of individual particles,
as in the micromechanics approach (5, 6).

In the SOC, the evolution of events (microfracturing, fluctuations in river
levels, change in market prices, etc.) is characterized by long periods of sta-
bility and short periods of rapid changes during which new events or forms
appear. Such a phenomenon is often referred to as punctuated equilibrium (4),
with periods of stasis (state of static balance of equilibrium or stable states)
of different durations separated by bursts of activity, which gives rise to 1�f
or flicker noise and power law behavior. In the case of microfracturing in
brittle materials (Type II), the occurrence of microcracks and fractures
involving stable material states can be considered to exhibit punctuated equi-
librium and stasis response.

It may be mentioned that the SOC (in the case of the sand pile) explains the
phenomenon of collapse or avalanche formation. However, it dos not include
the mechanical response of the growing sand pile before it reaches the critical
state. In other words, in the case of the behavior of engineering materials, the
SOC defines the initiation of collapse state (Dc, Fig. I.1), but may not define
the entire pre- and postpeak response.

In engineering material systems, evolution of the critical states, in general,
entails irreversible deformations, i.e., dissipation or release of energy. The
earth’s crust subjected to tectonic forces and motions of plates can lead to the
critical states or earthquakes. If we consider the relation between the flow of
sand (during sliding) with time, or the gradual developments of motions in
the earth’s crust leading to an earthquake, we would observe erratic signals
of different durations due to sudden crack formation and energy bursts. Such
signals are called flicker noise or 1�f noise (pronounced as “one over ef”
noise). The name 1�f noise indicates that the strength of a signal is inversely
proportional to its frequency (f).

The flicker or 1�f noise can be related to the systems that have evolved into
the critical state. Such systems exhibit a power law behavior given by

(I.1a)

where N is any quantity such as the number of earthquakes (or acoustic emis-
sions) with given energy, for which Eq. (I.1a) can be expressed as

(I.1b)

N f( ) f ���

N s( ) s ���
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where s is the energy released by the earthquake and � is a parameter. The
well-known empirical Gutenberg-Richter law (7, 8) for earthquakes follows
Eq. (I.1) and is given by

(I.2a)

where parameters a and b depend on the (regional) location, and N is the
number of earthquakes of size (or magnitude) greater than m. The energy, E,
released during the earthquake increases exponentially with its size, and is
given by

(I.2b)

where c and d are parameters. Based on Eq. (I.2), the Gutenberg-Richter law
represents the power law, Eq. (I.1), that connects the released energy (E) with
the frequency distribution:

(I.3a)

where 1.25 � � � 1.5 (2). The relation between N and m can also be expressed
as

(I.3b)

which represents a straight line on the log N vs. log m plot, Fig. I.5. In this
figure, N represents the number of earthquakes (per year), and magnitude m
is proportional to the released energy in the New Madrid seismic zone in the
southeastern United States during the period 1974–83 (8).

FIGURE I.5
Distribution of earthquake magnitudes in New Madrid zone (8). ©American Geophysical
Union.
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In the critical state concept (CSC) (9), a deforming material with given initial
pressure approaches the critical state at which it continues to deform in shear
under the constant shear stress with constant density or void ratio (Chapter 3).
The initiation of the critical state can be considered to imply initiation of col-
lapse of the material. In this sense, the basic idea in the SOC that defines the
behavior of a system that evolves to collapse can be considered to be similar
to the CSC. This has been shown by Evesque (10) on the basis of the stability
response of glass spheres in a rotating drum, by using Eqs. (3.2a) and (3.2b),
Chapter 3.

The foregoing brief descriptions suggest that a natural system (like an engi-
neering material) composed of interacting particles or clusters of particles
under external influences (forces, temperature, chemicals, etc.) can evolve
into catastrophic states, affected by the past history, due to the self-organiza-
tion of the internal microstructure of the system. As discussed in various
chapters in this book, a deforming material evolves from the RI state to the
FA state. During this process, the material’s microstructure can experience
irreversible deformations and energy release for homogeneous (Type I) mate-
rials, while it may experience both the energy release and microfracturing for
brittle materials (Type II). Both may exhibit a power law type behavior; how-
ever, the occurrence of the 1�f noise may usually be observed and measurable
only in the case of microfracturing. In other words, it is believed that the SOC
that is based on the power law behavior, steady states and 1�f noise, at this
time may be defined mainly in the case of microfracturing response.

The DSC, with the NSA idea, can explain both the foregoing responses and
can allow the characterization of the entire (prepeak, postpeak, and critical or
catastrophic) behavior, Figs. (I.1)–(I.3). The overall behavior can experience a
number of threshold transitions in its microstructure such as the transition
from compactive to dilative volume, peak stress, and the critical condition, at
Dc (11–13), Fig. I.3.

Acoustic Emissions

One of the ways to ascertain if the deforming material exhibits noisy (1�f
type) behavior is to perform indirect (nondestructive) measurements such as
acoustic emissions. Although a number of studies have considered the
microfracturing behavior, including measurements of AE, there are not many
results available for the measurement of AE in homogeneous (Type I) mate-
rials. Figure I.6 shows computer simulations of stress-strain, AE and dissi-
pated energy responses of a relatively (or more) heterogeneous rock
specimen (with homogeneity index m � 1.5), and relatively (or more) homo-
geneous rock specimen (m � 3) reported by Tang and Kaiser (14,15); details
of the computer simulation are given later in Example I.3. It can be seen that
the response of the heterogeneous rock involves relatively “noisy” AE distri-
bution. On the other hand, the homogeneous rock does not involve signifi-
cant AE in the prepeak and postpeak regions; the major AE occur near the
peak stress where failure due to sliding is indicated. Thus, the response of the
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relatively heterogeneous rock indicates dispersed microcracking with AE
that exhibit sudden bursts and noise, while that for the relatively homoge-
neous rock shows sudden bursts only near the peak. However, both may
exhibit power law type behavior; this is shown in Fig. I.7 for the relatively
heterogeneous rock. Here, the number of acoustic events for given AE count
were taken from Fig. I.6; because the details of the laboratory data are not
available, the values are essentially approximate. The rock exhibits power
law behavior given by

(I.4)

where the value of � � 166.15 and � � 1.012. Since sufficient data is not avail-
able from Fig. I.6 for the homogeneous rock, it is not possible to obtain a sim-
ilar plot.

In the following, we consider examples of the behavior of a number of
materials including correlations and comparisons between the DSC and SOC.

Example I.1: Simulated Microfracturing Phenomenon in 
Elastoplastic Materials
Zapperi et al. (16), performed numerical tests by considering the “fuse” model
constituting a resistor network system on a tilted square lattice. The disorder
(or heterogeneity) was introduced in the model by assigning a random failure

FIGURE I.6
Numerical simulation of tests for rock specimens (14). (Reprinted with permission from
Elsevier Science.)

N � AE( ) ��
�
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threshold, Ic, to each resistor, where Ic is the critical current analogous to stress.
In the classic fuse model, failure is identified when the current flowing in a
resistor exceeds the failure threshold, Ic ; then the bond is removed from the lat-
tice, and the electrical conductivity (c) drops to zero. Thus, the (resistor) model
develops a macroscopic crack and eventually the lattice breaks. The simulated
test (16) introduced permanent “damage” to the bond by decreasing its con-
ductivity by a factor a � (1 � �), where � is the damage parameter, [Eq. (4.23),
Chapter 4]. The analogy to linear elastic behavior can be used by expressing
the observed or actual stress, , as

(I.5a)

where  is the elastic constitutive matrix. Thus, the reduction in the conduc-
tivity, a, denotes the reduction in the initial stiffness, , which is equivalent
to the conductivity during the application of current, I; the voltage, V, is anal-
ogous to the strain. For the resistor model, Eq. (I.5a) can be written as

(I.5b)

It may be noted that Eq. (I.5) represents the classical damage model [Eq.
(4.24), Chapter 4]. In the context of the DSC, the general form of Eq. (I.5) will

FIGURE I.7
Number of AE events vs. AE event and determination of � and �.
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be given by

(I.6)

where  and  are relevant to the FA material parts. It is believed that Eq. (I.6)
can lead to more realistic representation of the behavior of the resistor model
because it allows for the coupling between the undamaged and damaged parts
(Chapter 4). Zapperi et al. (16) used the simplified Eq. (I.5). Such approximations
(14–16) do not allow for the nonlinear response, which many materials exhibit.

In the resistor model test, an external voltage (strain) difference is applied
to the lattice with periodic boundary conditions in the other direction. The
current in each bond or resistor node is computed by solving numerically
the Kirchoff equation using a multigrid relaxation algorithm with precision

 � . As the voltage is increased, the current (stress) reaches the thresh-
old value in (number of) bonds. For such damaged bonds, the disorder is
changed according to the reduction in the conductivity. The process is
repeated under new currents until no unstable bonds are present. The
“redistribution” of the disorder can cause an avalanche of additional bonds
breakage after the failure of a single bond. The network system was studied
in the limit of slow driving, implying that the time scale over which micro-
fractures form and propagate is much faster than the time scale of the exter-
nal driving (voltage). This condition is one of the characteristics of systems
that exhibit SOC (4).

During the application of increasing voltage, initially there occurs propor-
tional increase in the total current (stress); i.e., the system behavior is linearly
elastic, Fig. I.8(a). With further increase in the voltage and development of
damage and broken bonds, the system deviates from linear elasticity,
becomes macroscopically plastic, and approaches the steady state. In this
state, an increase in the voltage (strain) is balanced by the damage such that
the current (stress) remains approximately constant, and it is accompanied by
high fluctuations (in the current), with avalanches of different sizes.

Zapperi et al. (16) studied the statistical properties of the bond breakage,
fracture, or rupture events in time and the magnitude of fracturing, Fig. I.8(b).
The avalanche or rupture event size probability distribution function, P(s),
was found to be given by

(I.7)

where s is the number of damaged bonds for a given voltage increment,
Fig. I.8(b), and � � 1.19 � 0.01. Figure I.8(c) shows the plot of P(s) vs. s for
different sizes of the model (L � 16, 32, 64). It can be seen that the response
of the system experiencing microfracture and rupture events displays the
power-law behavior. The distribution of energy bursts during the testing
was found to be related to the acoustic emissions recorded, and also
exhibited the power-law behavior (16–18).

Ia 1 D�( )ciVi Dcc Vc
�
�

cc Vc

10 12�

P s( ) s ���



© 2001 By CRC Press LLC

Mechanics of Materials and Interfaces

Based on the above-simulated response of elastoplastic materials, it can be
stated that under the strain or displacement (voltage) controlled loading, the
system may exhibit SOC. However, it was stated that under constant stress
(or current) controlled loading, the system may tend to instability corre-
sponding to the critical stress (current) in the strain (voltage) controlled
experiment (16). A system like a hardening (compacting) material may
exhibit non-stationary distribution of critical state (avalanches) with a power
law; however, it may not exhibit the SOC response. Thus, there are controver-
sies and differences of opinion regarding whether all materials under differ-
ent loading conditions are SOC (16, 19). Further investigations will be needed
to resolve these and other issues. In the meantime, it is believed that the DSC,
with the idea of natural self-adjustment, can provide a general framework for
the behavior of engineering materials.

FIGURE I.8
Current vs. voltage, broken bonds, and avalanche size distributions (16). (Reprinted with
permission from Nature, 1997, McMillan Magazines Ltd.)

http://www.nature.com


©  2001 By CRC Press LLC

APPENDIX I

Example I.2:  Microfracturing and Acoustic Emissions in 
Laboratory Tests for Rock
Cox and Meredith (20) performed unconfined compression tests on cylindrical
specimens (25 mm dia. and 72 mm long), Fig. I.9(a), of Gosford sandstone from
NSW, Australia. The rock has porosity of 13% and contains mostly sub-angular
to sub-rounded quartz and quartzite grains with diameters in the range of
0.1–1.0 mm, with about 20% fine-grained clay and polycrystalline mica matrix
material. The specimens are tested under strain-controlled loading at a con-
stant rate of axial shortening. Acoustic emissions are measured by using PZT
AE sensors located in cavities within the end platens, Fig. I.9(a).

The stress-strain behavior of one of the specimens, shortened at the rate of
0.495 �m�sec (approximate strain rate � 7 � �sec) is shown in Fig. I.9(b).
The stress vs. time (which bears approximately linear relation to strain) and
AE or hit rate vs. time are shown in Figs. I.10(a) and (b), respectively. It can
be seen from Figs. I.9(b) and I.10(a) that during the linear elastic phase of the
stress-strain response, very few AE occurred because the active deformation

FIGURE I.9
Rock specimen and stress-strain response: strain rate � 0.495 �m�sec (�7 � 10�6/sec) (20).
(Reprinted with permission from Elsevier Science.)

10 6�
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mechanisms (pore-crack closure and elastic shortening) are continuous. In the
zone beyond the linear elastic in which irreversible deformations occur, the
rate of AE increases because of discontinuities due to microfractures and
cracks. The maximum rate occurs near the peak and stress drop region, and
then decreases in the post-drop region.

The AE rates at different times were computed (approximately) based on Fig.
I.10(b). They were then ranked in descending order, Table I.1. Figure I.11 shows
a plot of AE rate vs. rank on log-log scale. This plot is similar to that proposed in
the Zipf’s law (21). The (average) value of � (Fig. I.11) is found to be 1.558 with �
� 316.65, indicating the power-law behavior as in the SOC.

FIGURE I.10
Stress vs. time and hit (AE) rate vs. time for rock specimen, Figure I.9 (20). (Reprinted with
permission from Elsevier Science.)

FIGURE I.11
AE rate vs. rank: Test on rock specimen.
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In the following example, we analyze computer-simulated behavior of a
rock, which provides comprehensive results in terms of stress-strain
response, AE and dissipated energy.

Example I.3: Simulated Microfracturing and Acoustic 
Emission in Brittle Rock
Tang and Kaiser (14) and Kaiser and Tang (15) performed computer simula-
tion of the behavior of rocks with different levels of heterogeneities. In addi-
tion to the response of rock itself (Fig. I.6), they also considered the behavior
of rock (pillar) surrounded by host rocks [roof and floor, Fig. I.12(a)]. Two
cases were considered, stiffer, and softer host rocks; we consider here analysis
of the former. For the stiff host rock problem, the following material properties
were adopted (15):

The simulations are performed by using a finite element procedure in
which the rock was assumed to be linear elastic. A finite element is consid-
ered to have failed when the peak stress, 	f, is reached. The seismic events or
acoustic emissions are assumed to be proportional to the number of failed
elements under the brittle failure. Then, the cumulative AE event rate, �, is

TABLE I.1

Acoustic Emission Rates and Rank for Microfracturing in Rock (20)

Time, Secs 
Origin + 500 secs AE Rate Rank Order AE

62.5 1 1 140
125 2 2 110
187.5 4 3 70
219.5 7 4 65
250 12 5 35
282.5 28 6 30
312.5 65 7 28
344.75 110 8 22
375 140 9 12
389.25 70 10 7
437.5 35 11 4
469.75 30 12 2
500 22 13 1

Property Pillar Roof and Floor

Elastic Modulus 60 GPa 300 GPa
Poisson’s Ratio 0.25 0.25
Shear Strength 200 MPa 200 MPa
Homogeneity Index

Elasticity 20 20
Strength 3 3
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FIGURE I.12
Pillar-stiff host rock model and simulated stress-strain, AE, and energy responses.
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considered to be proportioned approximately to damage or disturbance (D)
as

(I.8a)

where D is the damage given by

(I.8b)

vf is the volume of failed element, V is the total volume, ni is the number of
failed elements, s is the number of calculation steps, and N is the total number
of elements in the (FE) mesh. The cumulative seismic energy (E), assuming
brittle failure at 	f, is given by (15)

(I.9)

where Cf is the elastic modulus, and Ef is the released energy for a given
element. The magnitude, mf , of an individual microseismic event, and the
magnitude, Mf, of the seismic event cluster are obtained from (15)

(I.10a)

and

(I.10b)

where i is the number of events in an event cluster and C is the constant.
It may be noted that the above model is based on simple linear elastic char-

acterization in which the “damaged” elements have no strength, as in the
classical damage model. In actuality, the rock behavior is usually nonlinear,
and the FA (or damaged) elements can possess certain strength and interact
with the RI elements as in the DSC. If such interactions were allowed, the
computed simulations can be different.

Figure I.12(b)–(d) (22) show the stress, cumulative AE and E/Emax vs. strain
for the pillar in the stiff host rock model, Fig. I.12(a); details of plots showing
AE counts at different loading steps and formation of shear planes leading to
failure are given in (15).

Figures I.12(b)–(d) show that the highest number of AE and magnitude of
energy dissipation occur around the first stress drop, Fig. I.12(a), after the
peak stress. Then a number of stress drops occur in the descending part of the
curve, and each drop is associated with elevated AE and energy release. For
the pillar-stiff host rock model, the energy stored in the host rock that can be
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released before equilibrium, or steady state, is very small such that stability
can be achieved at various stages in the post-peak response, e.g., points B and
D, Fig. I.12(a).

Figure I.13 shows the logarithmic plot of number of times an AE occurred
vs. AE, measured (approximately) from Fig. I.12(c). It shows that the slope, �,
is about 0.978 with � � 54.196, showing power-law behavior.

Figure I.14 shows the plot of AE rate with respect to strain AE�d
 (�AEr) vs.
rank, as in the Zipf’s law (21). The AE rate is computed as average AE over a

FIGURE I.13
Number of AE events vs. AE event and determination of � and �.

FIGURE I.14
AE rate with respect to strain vs. rank.
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given strain range divided by the corresponding strain increment. This is
similar to the analysis by Petri (18) in which the number of broken bonds
between two consecutive stretches (strains) are considered. The relation
between (AE)r and rank (R) is given by

(I.11)

The value of �, Fig. I.14, is found to be about 1.42 and � � 32 � .

Disturbance, AE, and Energy

The disturbance, D, can be expressed based on the stress-strain response,
Fig. I.12(b), where the RI response is simulated as nonlinear elastic or elasto-
plastic:

(I.12a)

in which  ≈ 17.0 MPa. In terms of plastic strains, 
, disturbance is expressed
as

(I.12b)

where Du � 1 is assumed. The plastic strains, 
, are computed as

(I.12c)

where 
 t denotes the total strain, Fig. I.12(b), and  is the elastic strain
computed by using elastic modulus, E ≈ 6.67 �  MPa. Figure I.15 shows
computed, Eq. (I.12b), and measured, Eq. (I.12a), disturbance, with respect to

. The values of A1 and Z1 were found by plotting  ln[�ln(1 � D	)] vs. ln(
);
their values were found to be A � 48.584 and 1.522, respectively.

The variations of the norm of AEn (AE�515), Fig. I.12(c), and of E/Em, Fig. I.12(d),
can also be expressed in terms of plastic strains as

(I.13a)

and

(I.13b)
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The values of A2 � 45.792 and Z2 � 1.192, and A3 � 168.629 and Z3 � 1.912 were
found corresponding to Eqs. (I.13a) and (I.13b), respectively. Figures I.16(a) and
(b) show computed variations of AEn and E�Em vs. plastic strains, Eq. (I.13). It
can be seen from Figs. (I.15) and (I.16) that the disturbance, AEn and E�Em,
show similar relationships with respect to plastic strains. Also, they can be
correlated; Figs. I.17(a) and (b) show such relations between disturbance and
AE and E�Em. In fact, the relations can be expressed as

(I.14a)

(I.14b)

The foregoing analyses show that there exist correlations between distur-
bance, acoustic emissions and energy dissipation. Hence, the behavior of the
rock can be explained by using disturbance as the measure of microstruc-
tural changes. This is further illustrated in Fig. I.18, where the disturbance
rate (Dr) with respect to strains is plotted with rank; in Fig. (I.14), a similar
plot for energy rate is presented. The behavior in Fig. I.18 exhibits the power
law with � � 1.027 and � � 1228.68.

In Fig. I.19(a)–(c) are plotted the variations of derivatives of disturbance,
Eq. (I.12b), AEn, Eq. (I.13a), and E�Em, Eq. (I.13b), with plastic strains; they
show behavior similar to the AE rate measured in the laboratory test on rock,
Fig. I.10b. At the initiation of the collapse or residual condition, the plastic
strain is about 0.12% and occurs at the critical value, Dc ≈ 0.90, (AEn) ≈ 0.95,
and (E�Em)c ≈ 0.97.

FIGURE I.15
Measured and modeled disturbance vs. plastic strain.
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Example I.4: Instability and Liquefaction During Earthquake
We now present analysis of the Port Island, Japan earthquake in 1995, during
which data for measured shear wave velocities, stress-strain behavior and dis-
sipated energy were available (23). These results were used to identify liquefac-
tion based on the DSC and energy approaches (12).

Figures I.20(a) and (b) show soil details and instruments, and typical mea-
surements of shear wave velocities with time, respectively. Figures I.21(a)
and (b) show dissipated energy vs. time and typical shear stress-strain
curves, respectively. Figure I.22 shows disturbance (D) with time at various
depths. Disturbance was computed on the basis of shear wave velocities [Eq.
3.9, Chapter 3] in which the RI shear wave velocity,  � 250 m�s, and the FA
velocity,  � 25 m�s, were adopted;  relates to average velocity in the
upper saturated soil layer, Fig. I.20(b) before the earthquake, and  repre-
sents the fully adjusted or residual velocity after the earthquake shaking. It

FIGURE I.16
Computed AE norm and E�Em vs. plastic strain.
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was found that the soil experienced instability and liquefaction after about
14.6 seconds during the earthquake when the shear wave velocity was about
42 m�s and the critical disturbance, Dc ≈ 0.905, Fig. I.22.

The dissipated energy and disturbance rates, Er and Dr, were computed
with respect to time. Here, average values of energy or disturbance, Figs. I.21
and I.22, over a given time range were divided by the corresponding time
increment. Figures I.23(a) and (b) show Er and Dr versus Rank (R) on the log-
arithmic scale. The values of the exponent, �, were found to be about 1.182
and 1.1416, and � � 27.27 and 6.45 for Er and Dr, respectively, showing the

FIGURE I.17
Relations between AE norm and E/Em, and disturbance.

FIGURE I.18
Disturbance rate vs. rank.
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power-law behavior. However, the existence of 1�f noise cannot be verified
for this case. This is because the saturated soil under earthquake loading
experiences continuous compaction, which causes increase in the pore water
pressure. When the pore water pressure approaches the critical value (critical
disturbance, Dc), microstructural instability or liquefaction occurs (11–13).
This compaction phenomenon essentially involves particle motions and may
not involve microfracturing that may usually be responsible for 1�f-type
noise.

FIGURE I.19
Plots of derivatives of D, AE norm, and E�Em vs. plastic strain.
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FIGURE I.19
(continued)

FIGURE I.20
Soils, instruments, and measured shear wave velocities, Port Island, Kobe site (23).
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FIGURE I.21
Dissipated energy and typical stress-strain curves (23).

FIGURE I.22
Disturbance vs. time at different depths, energy vs. depth, and growth of liquefaction (12).
With permission.
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Example I.5: Cyclic Behavior of Saturated Sands
We consider laboratory behavior of two saturated sands, Reid Bedford (24)
and Ottawa (11–13, 25), tested by using torsional shear and multiaxial
devices, respectively.

Figure I.24 shows the shear stress vs. strain and time (10 points�sec), and
pore water pressure vs. time responses for the sand specimen with relative
density Dr � 60%, initial mean pressure po � 124.10 kPa tested under cyclic
strain-controlled condition (frequency = 0.10 Hz) with amplitude of shear
strain � 47%. Figure I.25 shows plots of disturbance (D) and accumulated
energy per unit volume with number of cycles (N). The values of D were
found based on the stress-strain response, Fig. I.24(a). Figure I.26(a) shows
energy rate Er vs. Rank; Er was computed as the ratio of average energy over
a range of pore water pressure to the pore water pressure increment. Figure
I.26(b) shows disturbance rate vs. rank. The value of � � 0.341 and 0.327, and
� � 2155.98 and 1.17, respectively, are indicated.

Cyclic stress-controlled (frequency � 0.10 HZ) tests were performed on
cubical (10 � 10 � 10 cm) specimens of saturated Ottawa sand with Dr � 60%
and initial effective confining pressures   � 69, 138, and 207 kPa. The mea-
surements were obtained in terms of stress, strain, and pore water pressure
responses (25). The results for pore water pressure (Ue) vs. time for the three
confining pressures are shown in Fig. I.27. The effective stress  was com-
puted as the difference between the total stress, 	, and pore water pressure,
Ue ; Fig. I.28 shows plots of  vs. N. The disturbance was computed by

FIGURE I.23
Energy rate and disturbance with respect to time vs. rank: Port Island earthquake.
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assuming the RI behavior to be elastoplastic with the HISS �0-plasticity
model (Chapter 7), given by

(I.13)

where  is the asymptotic effective stress, which can be adopted to be zero.
Figure I.29 shows the plot of the disturbance rate, Dr, with respect to pore

water pressure vs. the rank; the values of � � 1.886 and � � 1.986.

FIGURE I.24
Test results for Reid Bedford sand (24) (with permission).
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As indicated earlier, the saturated sand under shear loading (strain and
stress controlled) experiences compaction and reaches unstable or collapse or
liquefaction condition when the pore water pressure becomes approximately
equal to the initial effective pressure. During the process, the material’s
microstructure can experience continuing compaction without (measurable)
1�f-type noise. Hence, the behavior may not be considered to exhibit SOC-
type response. However, the microstructural evolution can be explained in
terms of self-adjustment in the DSC.

Summary

The foregoing review and analysis indicate that the DSC, with the micro-
structural self-adjustment approach, can explain mechanical behavior of a
wide range of material systems. The disturbance, D, provides for evolution
of both the continuous yielding and microfracturing responses, and can be
correlated to dissipated energy and nondestructive measures such as acous-
tic emissions. The DSC provides characterization of the entire material

FIGURE I.25
Disturbance and accumulated energy vs. time (N): Reid Bedford sand.
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response including prepeak, peak, postpeak, and collapse or failure. On the
other hand, the CSC and SOC provide definition of collapse or critical state;
in this context, the DSC is considered to be general, because it includes the
collapse state defined by the CSC and SOC as a special case.
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APPENDIX II.  DSC Parameters: 
Optimization and Sensitivity

In previous chapters, we discussed procedures for the determination of parame-
ters in the DSC and its hierarchical versions, namely, elasticity, plasticity and elas-
toviscoplasticity, and disturbance by using essentially manual and conventional
least-square procedures. In this appendix, we present details of the conventional
least square, and general optimization procedures for the evaluation of parameters.
We also consider the sensitivity of computed results to changes in the parameters.

The observed behavior of many materials may exhibit considerable scatter
even for the test specimens reconstituted under the same initial conditions.
Also, factors such as initial density, confining pressure, temperature, strain
rates, and stress path need to be considered because the objective is to evolve
the constitutive model that is valid for all such significant factors. Indeed, the
averaging or optimization procedure may lead to parameters that may predict
behavior under one factor better than that for the other. By assigning appro-
priate weight in the averaging or optimization procedure for a factor(s) that
is more significant for a given problem, it is possible to obtain parameters that
will lead to improved predictions for the given material.

Least Square Fit Procedure

We need to determine the parameters on the basis of laboratory test data such
as stress-strain, volumetric and pore water pressure. In general, the mea-
sured quantities such as stress and strain can be denoted by symbols y and x,
respectively. Then the function to fit the given set of data points (xi, yi, i � 1,
2, …, n), Fig. II.1, can be expressed as (1)

(II.1)

where ai (i � 1, 2, . . . , m) are the constants to be determined from the least-
square criterion described below, and x and y denote the experimental data.
Hence,

(II.2)

y a1 f 1 x( ) a1 f 2 x( ) … am f m x( )� � ��

yi ak f k xi( )
k�1

m

��
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When the values of experimental data are substituted in Eq. (II.2), it will not
be satisfied; i.e., there will be residuals (Ri). Hence,

(II.3a)

The best fit with the experimental data is obtained by making the residuals
as small as possible, which is achieved by finding the values of ai such that
the sum of the squares of the residuals is a minimum, i.e.,

(II.3b)

which can be written in matrix rotation as

(II.4a)

where   � [R1 R2 … Rn], and

(II.4b)

FIGURE II.1
Function and data points.
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By using Eqs. (II.3) and (II.4), we can obtain

(II.5)

where  � [a1 a2 … am] and   � [y1 y2 … yn]. Solution of the algebraic equa-
tions (II.5) leads to values of ai that provide the best fit to the observed data,
Fig. II.1.

We can assign different weights (wi) to different data points. In that case,
the minimizing residual quantity is given by

(II.6a)

Then, Eq. (II.5) is modified as

(II.6b)

where  is the diagonal matrix with w1, w2 ,… as diagonal elements.
As an example, let us consider the evaluation of parameters a1 and �1 in the

hardening function, �, Eq. (7.11a), Chapter 7, which can be written as

(II.7)

With a number of data points, n (�i, �i), this equation can be written in
matrix notation as

(II.8)

which can be solved for a1 and  �1 by using the least square procedure. Details
of the procedures for finding parameters for the HISS and other plasticity and
disturbance models are given elsewhere (2–4).

Optimization Procedure

In the least square procedure, which is termed as conventional, we obtain the
parameters for a given test data, and then average them over a number of
tests, say, under different loading conditions and stress paths. It can also
allow evaluation of weighted average values by using data points from a
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number of tests, in which each test (stress path) is assigned an appropriate
weight.

However, the quality of the parameters is also affected by the constraints
arising from physical requirements. Hence, the quality of parameters can be
improved by including the effects of various factors such as stress paths and
density, and the constraining conditions in an optimization procedure. Such
an optimization procedure developed for finding the parameters for the DSC
model is described below (4).

Objective Function

In the optimization procedure, an objective function is defined (5). Here, the
objective function, r, which consists of weighted basic objective functions (ri)
for different stress paths, is expressed as

(II.9)

where wi (� wi � 1) denotes the weights corresponding to the objective func-
tions, ri.

For a given experimental response for a stress path,  denotes the total
error given by

(II.10)

where  denotes predictions by the (DSC) model, f denotes the test (stress-
strain) data, x1 and x2 are the end points of the sampling data, Fig. II.2, and 
is the vector of material parameters (see later). The ideal situation is that  ,
Eq. (II.10), vanishes. However, usually, the optimization procedure is
designed such that  is minimized, i.e.,  → 0.

The weights, wi, in Eq. (II.9) are adopted on the basis of experience and
engineering judgment. For example, for the stability analysis of a slope or
dam, the extension behavior, Fig. 7.13 (Chapter 7), is more significant, and
hence, a greater weight is assigned to the extension test data. For the footing
load on a half space, the compressive behavior is predominant; hence, its data
can be assigned a higher weight. Sometimes, as a simplification, data from all
available stress path tests may be assigned equal weights such that � wi � 1.

Constraints

In an optimization procedure, the analysis is carried out under constraints
that influence the objective function. In the case of the DSC model, the follow-
ing constraints are introduced (see Chapters 2–12) for various parameters.
Here in the DSC model, the RI response is characterized by using the HISS-	0
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elastoplastic model.

Elastic

(II.11a)

Plasticity (HISS-	0 Model)

As the hardening function � 
 0, Eq. (7.11a), the constraining condition for
the ultimate parameter, �, is given by

(II.11b)

The constraining condition for the parameter, �, for the shape of the yield
surface is given by (Chapter 7).

(II.11c)

For the transition or phase change parameters, n, the condition is

(II.11d)

The optimization problem is to evaluate  given by

(II.12)

such that   is minimized. Here, the elements of   are the parameters in
the DSC model that include elastic, elastoplastic (HISS-	0), critical state (for
FA behavior) and disturbance; Du � 1.0 is assumed.

FIGURE II.2
Schematic of residual.
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Numerical Method for Optimization

A number of strategies are available for the optimization procedure. They
include Newton’s method, quasi-Newton method with constrained or
unconstrained minimization (5). Here, we present and use the quasi-Newton
method with unconstrained approach, which leads to a simplified procedure.

In the Newton’s method, the function, , Eq. (II.10), is obtained by using
truncated Taylor series expansion at about point , Fig. II.3, as

(II.13)

where   denotes the vector of DSC parameters, Eq. (II.12), and  , 
is the vector of first partial derivatives or gradient vector given by

(II.14)

FIGURE II.3
Schematic Taylor series expansion of a function. ©John Wiley & Sons Ltd. Reproduced with
permission.
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and G is the matrix of second partial derivatives or Hessian matrix given by

(II.15)

and qk is the resulting quadratic function.
The iterative procedure involves evaluation of the parameters, which is

equal to  where the correction   minimizes . In the Newton’s
method, we need , , and  at different points (k) so as to evaluate .
The method gives well-defined solution if  is positive definite. A disad-
vantage of the Newton’s method is that we need to compute the Hessian
matrix, , which can be time-consuming. Hence, the simplified quasi-Newton
method given below is used here.

Quasi-Newton Method

Like the Newton’s method, the quasi-Newton method involves the line search
procedure (5). However, the matrix, , is approximated by using the symmetric
positive definite matrix, , which is corrected during the iterative procedure.
The following equations constitute the quasi-Newton method:

(II.16a)

(II.16b)

in which the matrix, ,  is updated during the iterations as , ,…,
denotes the line search direction, and  is the scalar line search step length,
described below.

The initial matrix, ,  can be adopted as any positive definite matrix,
which can be chosen as , where  is the identity matrix:

(II.17)

The BFGS algorithm (6–9), named after the first letter of the last names of
the four authors, is often used to evaluate iterated values of  as

(II.18)
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Line Search Strategy

A number of line search strategies have been proposed (5). One such strategy
is depicted in Fig. II.4, and is found to be efficient and stable. The following
descent and stability conditions are embedded in this strategy for the compu-
tation of  in Eq. (II.16b) (5):

(II.19a)

(II.19b)

where � is a scalar in the range of 0.0 to 0.5, and � is a scalar in the range of �
to 1.0. The following equations are used for the evaluation of 

(II.19a)

(II.19b)

where the prime denotes derivative.

FIGURE II.4
Descent and stable conditions (5). ©John Wiley & Sons Ltd. Reproduced with permission.
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Unconstrained Optimization

The optimization procedure subject to the constraints, Eq. (II.11), can be simpli-
fied by using unconstrained minimization (5). The constraints are transformed
by using trigonometric functions subject to the condition, �i � xi � ui, where �i

and ui, are the lower and upper bounds for the ith variable (parameter),
Eq. (II.11). The trigonometric transformation is given by

(II.20)

where y varies in the domain �∞ � yi � . Such a transformation procedure
works well and is reported by (10, 11).

The problem of unconstrained optimization is to

(II.21)

where with the following trans-
formations for various parameters and their initial values:

(II.22)

The initial values are found from the conventional averaging procedure.

Computer Code

A computer code (DSCOPT) for the unconstrained optimization was pre-
pared and validated as described below (4). It has also been used to perform
a sensitivity analysis to assess the relative influence of variations in parame-
ters on the model predictions.
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Validations

The laboratory behavior of the Leighton Buzzard (LB) sand under different
stress paths, Fig. 7.13, Chapter 7, is used as the basis of the validation.
Table II.1 shows details of the multiaxial tests on cubical specimens (10 �
10 � 10 cm) of sand under different stress paths, confining pressure, (�3), and
relative density, Dr (12).

For the optimization analysis, the material parameters were found by
dividing the test data in various groups. Groups 1–5, Table II.2(a), refer to the
tests for Dr � 95%, while Table II.2(b) refers to the tests for Dr � 10%. In each
group, only selected stress path tests were used for finding the parameters.
For example, in Group 1 three tests under HC, CTC (89.6 kPa), and CTC
(275.6 kPa), were used, and so on. Equal weights, Eq. (II.9), were used for
each test in a given group.

The parameters were found by using the conventional (least square) aver-
aging and the constrained optimization procedures. Then the stress-strain-
volumetric responses of tests under different stress paths were predicted by
using the optimized parameters and those from the conventional procedures,

TABLE II.1

Laboratory Tests of Leighton Buzzard Sand (12)

Density (Dr) Confining
Pressure, kPaStress Path 95% 65% 10%

CTC
(cylindrical)

� � � 89.6
� � � 275.6
� � � 826.8

RTE
(cylindrical)

� � 89.6
275.6

� 826.8
HC
(cylindrical)

� �

RTC
(cubical)

� 89.6
275.6
826.8

TC (cubical)
89.6

� 275.6
826.8

TE (cubical)
89.6

� 275.6
826.8

� denotes the test performed.
The void ratio: emax � 0.81, emin � 0.53.

Accordingly,
Dr � 95% ⇒ e0 � 0.544
Dr � 65% ⇒ e0 � 0.628
Dr � 10% ⇒ e0 � 0.782
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and were compared with the observed behavior. Typical results for only
selected groups are given below.

Tables II.3–II.5 show parameters for Groups 1 and 5 for Dr � 95% and
Group 6 for Dr � 10%, respectively. The percentage changes are with respect
to the parameters from the conventional procedure.

TABLE II.2(a)

Groups for Dr � 95%

Data Set Used
Stress Path Confining Stress (kPa) 1 2 3 4 5 Group

HC N�A � � � � �

CTC 89.6 � � � � �

CTC 275.6 �

CTC 826.8 �

RTE 89.6 �

TC 275.6 �

TE 89.6 �

TABLE II.2(b)

Group for Dr � 10%

Stress Path
Confining Stress 

(kPa)
Data Set Used

6 Group

HC N�A �

CTC 89.6 �

CTC 275.6 �

CTC 826.8 �

TABLE II.3

Parameter Values Determined from Data Group 1

Parameter Conventional Optimized Change (%)

E 101450 kPa 104507 kPa �3.01

 0.41 0.32584 �20.53
n 2.537465 2.40913 �5.06
� 0.7 0.60156 �14.06
� 0.08102 0.0894954 �10.46
a1 0.00296 3.00302E-4 �89.85
�1 0.2849 0.298106 �4.64

 0.00929 9.31397E-3 �0.26
e0 0.544 0.544 0

0.683211 0.752341 �10.12
� 0.0317 0.2940957 �827.75
A 0.4579 0.84379 �84.27
Z 0.3201 0.499684 �56.10

m

e0
c
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Typical comparisons between predicted and observed stress-strain and
volumetric responses for different groups are shown in various figures as
follows:

It can be seen from Figs. II.5–II.7  that the predictions by using the opti-
mized parameters yield much closer correlations with the observed
responses compared to those from the conventional procedures.

TABLE II.4

Parameter Values Determined from Data Group 5

Parameter Conventional Optimized Change (%)

E 40567.9 kPa 44194.6 kPa �8.94

 0.4 0.35904 �10.24
n 3 2.89034 �3.66
� 0.75 0.75213 �0.28
� 0.0827565 0.07904 �4.49
a1 0.00128265 0.001282 �0.05
�1 0.307546 0.31001 �0.80

 0.102821 0.110981 �7.94
e0 0.544 0.544 0

 0.783012 0.679201 �13.26
� 0.182442 0.2956 +62.02
A 0.965391 0.889101 �7.90
Z 0.29839 0.27092 �9.21

TABLE II.5

Parameter Determined from Data Group 6

Parameter Conventional Optimized Change (%)

E 35456.1 kPa 42830.5 kPa �20.80

 0.4 0.379 �5.25
n 2.6 2.758 �6.08
� 0.7 0.751456 �7.35
� 0.049215225 0.05315372 �8.00
a1 0.00122739 0.00102946 �16.13
�1 0.304157 0.3375602 10.98

 0.268212 0.2459786 �8.29
e0 0.544 0.544 0

 0.0327233 0.02002876 �38.79
� 0.0194252 0.0234572 �20.76
A 1.53464 1.300956 �15.23
Z 0.0800357 0.0689714 �13.82

Figure Group Stress Path  �3 Density

Fig. II.5 1 CTC 89.6 kPa 95%
Fig. II.6 5 TE 89.6 95%
Fig. II.7 6 CTC 826.8 10%

m

e0
c

m

e0
c
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Effect of Weight

In the previous analysis, equal weights were assigned to each stress path. In
order to assess the effect of weights on the predicted behavior, three special anal-
yses were performed by using the CTC (�3 � 89.6 kPa) and RTE (�3 � 89.6 kPa)
stress paths in Group 3, Table II.2(a):

(i) wCTC � wRTE � 0.5
(ii) wCTC � 0.65, wRTE � 0.35

(iii) wCTC � 0.35; wRTE � 0.65

FIGURE II.5
Comparisons between predictions and CTC test: Dr � 95%, �o � 89.6 kPa (4).
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Only results for the first two sets are presented here. Table II.6 shows
parameters corresponding to the use of the sets of weights. The percentage
error is with respect to the equal weights.

Figure II.8 shows comparisons between predictions using equal weights (�
0.5) and wCTC � 0.65 and wRTE � 0.35 for CTC test (�3 � 89.6 kPa, Dr � 95%).

It can be seen that the predictions for higher weight (� 0.65) for the CTC test
yield improved predictions compared to those from the equal weight (� 0.50).

Thus, the predictive quality of the model can be improved by assigning higher
weights to the stress paths that are important in a given practical problem.

FIGURE II.6
Comparisons between predictions and TE test: Dr � 95%, �o � 89.6 kPa (4).
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Sensitivity of Parameters

A special study was performed to establish the sensitivity of the DSC predic-
tions to the change in parameters and relative importance of the parameters.

Table II.7  shows the set of parameters adopted for this analysis. Predic-
tions for stress-strain responses for CTC (�3 � 826.8 kPa, Dr � 10%) and RTE

FIGURE II.7
Comparisons between predictions and CTC test: Dr � 10%, �o � 826.8 kPa (4).
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(�3 � 826.8 kPa, Dr � 10%) tests were obtained for three values of each param-
eter; the value in Table II.7, and two other values as �20% and �20%. All
other parameters were kept constant, while a given parameter was thus
changed.

Figure II.9 shows averages of cumulative relative differences for the two
(CTC and RTE) tests, which was found as

(II.23)

where q (� �1 � �3) denotes the observed stress, and  denotes the computed
value.

TABLE II.6

Effect of Weight on Parameter Values of Test Group 3 (wCTC � 0.65; wRTE � 0.35)

Parameter wCTC � wRTE � 0.5 wCTC � 0.65; wRTE � 0.35 Change (%)

E 354176.9 kPa 37334.2 kPa �6.13

 0.3736 0.3549 �5.01
n 2.48745 2.56391 �3.07
� 0.755 0.6013 �20.36
� 0.424063 0.498171 �17.48
a1 0.0690234 0.0649979 �5.83
�1 0.06012 0.05537 �7.90

 0.199052 0.190444 �4.32
e0 0.544 0.544 0

 0.400987 0.431145 �7.52
� 0.209711 0.347845 �65.87
A 3.07893 2.84561 �7.58
Z 0.199761 0.198043 �0.86

TABLE II.7 

Parameters for Sensitivity Analysis

No. Parameter Value

1 E 14345
2 
 0.35
3 n 2.6
4 � 0.6
5 � 0.0502571
6 a1 0.000386232
7 �1 0.7112
8  0.0790039
9  0.0883205

10 � 0.049583
11 A 1.01535
12 Z 0.4284032

m

e0
c

m
e0

c

Cumulative Relative Difference
q q�

q
-------------

 
 ��

q
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Table II.8 shows the order of the parameter sensitivity to computed results.
It can be seen that the changes in the phase change (n), ultimate slope of yield
surface (�), hardening (�1) and the ultimate shape (�) parameters affect the
predictions most. The other parameters in this analysis do not appear to
influence the predictions significantly. Hence, it will be desirable to evaluate
n, �, �1 and � as carefully as possible.

FIGURE II.8
Effect of weight on backprediction of CTC test: Dr � 95%, �o � 89.6 kPa; �1 � �CTC � 0.65,
�2 � �RTE � 0.35 (4).
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